Solveeit Logo

Question

Question: How do you solve \[4\sin x\cos x=1\]?...

How do you solve 4sinxcosx=14\sin x\cos x=1?

Explanation

Solution

This type of question is based on the concept of trigonometry. Here, simplify the given function using the trigonometric identity 2sinxcosx=sin2x2\sin x\cos x=\sin 2x. And divide the whole equation by 2 and cancel out the common terms. Then, use trigonometric inverse identity, that is, sin1(sinθ)=θ{{\sin }^{-1}}\left( \sin \theta \right)=\theta and simplify the given function. We know that, sin(π6)=12\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}. Using this, we can find the value of x.

Complete answer:
According to the question, we are asked to find the value of 4sinxcosx=14\sin x\cos x=1.
We have been given the function is 4sinxcosx=14\sin x\cos x=1. --------(1)
Consider the R.H.S first.
4sinxcosx=2×2sinxcosx\Rightarrow 4\sin x\cos x=2\times 2\sin x\cos x
We know that, 2sinxcosx=sin2x2\sin x\cos x=\sin 2x.
Using the trigonometric identity 2sinxcosx=sin2x2\sin x\cos x=\sin 2x, we get,
4sinxcosx=2sin2x4\sin x\cos x=2\sin 2x
Therefore,
2sin2x=12\sin 2x=1
On further simplification, we get,
sin2x=12\sin 2x=\dfrac{1}{2} -----------(2)
Now, take sin1{{\sin }^{-1}} on both the sides of the equation (2).
sin1(sin2x)=sin1(12){{\sin }^{-1}}\left( \sin 2x \right)={{\sin }^{-1}}\left( \dfrac{1}{2} \right) -------(3)
We know that, sin1(sinθ)=θ{{\sin }^{-1}}\left( \sin \theta \right)=\theta .
Using this identity in equation (3), we get,
2x=sin1(12)2x={{\sin }^{-1}}\left( \dfrac{1}{2} \right)
x=12sin1(12)\therefore x=\dfrac{1}{2}{{\sin }^{-1}}\left( \dfrac{1}{2} \right) -------(4)
We know that sin(π6)=12\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}.
sin1[sin(π6)]=sin1(12)\Rightarrow {{\sin }^{-1}}\left[ \sin \left( \dfrac{\pi }{6} \right) \right]={{\sin }^{-1}}\left( \dfrac{1}{2} \right)
sin1(12)=π6\Rightarrow {{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{6}
But the same value repeats after an interval 2π2\pi in a trigonometric cycle.
Therefore,
sin1(12)=π6+2nπ{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{6}+2n\pi , where n is natural numbers.
We get the value of sin1(12){{\sin }^{-1}}\left( \dfrac{1}{2} \right) on putting the value of n as 0,1,2 and so on.
Substitute the obtained value of sin1(12){{\sin }^{-1}}\left( \dfrac{1}{2} \right) in equation (4).
x=12(π6+2nπ)x=\dfrac{1}{2}\left( \dfrac{\pi }{6}+2n\pi \right)
On further simplifications, we get,
x=π6×2+2nπ2\Rightarrow x=\dfrac{\pi }{6\times 2}+\dfrac{2n\pi }{2}
x=π12+nπ\therefore x=\dfrac{\pi }{12}+n\pi
Hence, the value of x in the function 4sinxcosx=14\sin x\cos x=1 is π12+nπ\dfrac{\pi }{12}+n\pi .

Note: We must be thorough with the trigonometric identities. We should avoid calculation mistakes based on sign conventions. It is advisable to first simplify the given equation and then solve to avoid confusion. Trigonometric identities for inverse should also be used to find the value of x. We can also simplify the given equation by cross- multiplying the given function.