Solveeit Logo

Question

Question: How do you solve \(2{{x}^{2}}-3x+4=0\) using the quadratic formula?...

How do you solve 2x23x+4=02{{x}^{2}}-3x+4=0 using the quadratic formula?

Explanation

Solution

We have been given a quadratic equation of x as 2x23x+4=02{{x}^{2}}-3x+4=0. We use the quadratic formula to solve the value of the x. we have the solution in the form of x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} for general equation of ax2+bx+c=0a{{x}^{2}}+bx+c=0. We put the values and find the solution.

Complete answer:
We know for a general equation of quadratic ax2+bx+c=0a{{x}^{2}}+bx+c=0, the value of the roots of x will be x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}. This is the quadratic equation solving method. The root part b24ac\sqrt{{{b}^{2}}-4ac} of x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} is called the discriminant of the equation.
In the given equation we have 2x23x+4=02{{x}^{2}}-3x+4=0. The values of a, b, c are 2,3,42,-3,4 respectively.
We put the values and get x as x=(3)±(3)24×4×22×2=3±234=3±i234x=\dfrac{-\left( -3 \right)\pm \sqrt{{{\left( -3 \right)}^{2}}-4\times 4\times 2}}{2\times 2}=\dfrac{3\pm \sqrt{-23}}{4}=\dfrac{3\pm i\sqrt{23}}{4}.
The roots of the equation are imaginary numbers.
The discriminant value being negative, we get the imaginary numbers root values.
In this case the value of D=b24acD=\sqrt{{{b}^{2}}-4ac} is non-square. b24ac=(3)24×4×2=23{{b}^{2}}-4ac={{\left( -3 \right)}^{2}}-4\times 4\times 2=-23.
This is a negative value. That’s why the roots are imaginary.

Note: We find the value of x for which the function f(x)=x24x+1f\left( x \right)={{x}^{2}}-4x+1. We can see f(2+3)=(2+3)24(2+3)+1=4+3+43843+1=0f\left( 2+\sqrt{3} \right)={{\left( 2+\sqrt{3} \right)}^{2}}-4\left( 2+\sqrt{3} \right)+1=4+3+4\sqrt{3}-8-4\sqrt{3}+1=0. So, the root of the f(x)=x24x+1f\left( x \right)={{x}^{2}}-4x+1 will be the 2+32+\sqrt{3}. This means for x=ax=a, if f(a)=0f\left( a \right)=0 then (xa)\left( x-a \right) is a root of f(x)f\left( x \right). We can also do the same process for 232-\sqrt{3}.
We can also solve using the square form.
We have 2x23x+4=2[(x34)2+2316]2{{x}^{2}}-3x+4=2\left[ {{\left( x-\dfrac{3}{4} \right)}^{2}}+\dfrac{23}{16} \right].
We get 2[(x34)2+2316]=02\left[ {{\left( x-\dfrac{3}{4} \right)}^{2}}+\dfrac{23}{16} \right]=0. Taking solution, we get

& {{\left( x-\dfrac{3}{4} \right)}^{2}}+\dfrac{23}{16}=0 \\\ & \Rightarrow {{\left( x-\dfrac{3}{4} \right)}^{2}}=-\dfrac{23}{16} \\\ & \Rightarrow \left( x-\dfrac{3}{4} \right)=\dfrac{\pm i\sqrt{23}}{4} \\\ & \Rightarrow x=\dfrac{3\pm i\sqrt{23}}{4} \\\ \end{aligned}$$. Thus, verified the solution of the equation $2{{x}^{2}}-3x+4=0$ is $$x=\dfrac{3\pm i\sqrt{23}}{4}$$.