Solveeit Logo

Question

Question: How do you solve \(2{(\sin x)^2} - 5\cos x - 4 = 0\) in the interval \([0,2\pi ]\) ?...

How do you solve 2(sinx)25cosx4=02{(\sin x)^2} - 5\cos x - 4 = 0 in the interval [0,2π][0,2\pi ] ?

Explanation

Solution

Write the equation in terms of cosx\cos x , Convert it into a quadratic expression which is an equation of degree 22 , and then solve it. After getting the solution of the quadratic expression, find the range of values of cosx\cos x in the interval [0,2π][0,2\pi ] .

Formula used: The roots of a quadratic equation( ax2+bx+c=0a{x^2} + bx + c = 0 ) can be found by the formula,
x=[b±b24ac2a]x = \left[ {\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}} \right]

Complete step-by-step solution:
The given expression, 2(sinx)25cosx4=02{(\sin x)^2} - 5\cos x - 4 = 0
From the formula, sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 We can write sin2x=1cos2x{\sin ^2}x = 1 - {\cos ^2}x
2[1cos2x]5cosx4=0\Rightarrow 2[1 - {\cos ^2}x] - 5\cos x - 4 = 0
Multiplying 2 with the contents inside the bracket i.e. 1cos2x1 - {\cos ^2}x
[22cos2x]5cosx4=0\Rightarrow [2 - 2{\cos ^2}x] - 5\cos x - 4 = 0
After further evaluating the constants,
2cos2x5cosx2=0\Rightarrow - 2{\cos ^2}x - 5\cos x - 2 = 0
Multiplying the entire equation with ( - ) on both sides,
2cos2x+5cosx+2=0\Rightarrow 2{\cos ^2}x + 5\cos x + 2 = 0
Now, Let’s assume x=cosxx = \cos x . By this assumption, we get a Polynomial equation of degree 22 (quadratic).
2x2+5x+2=0\Rightarrow 2{x^2} + 5x + 2 = 0
The roots of a quadratic equation( ax2+bx+c=0a{x^2} + bx + c = 0 ) can be found by the formula,
x=[b±b24ac2a]x = \left[ {\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}} \right]
In our solution, a=2;b=5;c=2a = 2;b = 5;c = 2 .On substituting in the Quadratic formula,
x=[5±524×2×22×2]\Rightarrow x = \left[ {\dfrac{{ - 5 \pm \sqrt {{5^2} - 4 \times 2 \times 2} }}{{2 \times 2}}} \right]
Evaluate the expression inside the root first.
x=[5±25162×2]\Rightarrow x = \left[ {\dfrac{{ - 5 \pm \sqrt {25 - 16} }}{{2 \times 2}}} \right]
x=[5±92×2]\Rightarrow x = \left[ {\dfrac{{ - 5 \pm \sqrt 9 }}{{2 \times 2}}} \right]
Now evaluate the square root of 99
x=[5±32×2]\Rightarrow x = \left[ {\dfrac{{ - 5 \pm 3}}{{2 \times 2}}} \right]
On simplifying we get,
x=[5±34]\Rightarrow x = \left[ {\dfrac{{ - 5 \pm 3}}{4}} \right]
This comes to two cases,
x=[5+34];x=[534]\Rightarrow x = \left[ {\dfrac{{ - 5 + 3}}{4}} \right];x = \left[ {\dfrac{{ - 5 - 3}}{4}} \right]
x=[24];x=[84]\Rightarrow x = \left[ {\dfrac{{ - 2}}{4}} \right];x = \left[ {\dfrac{{ - 8}}{4}} \right]
Evaluate further to get simple constants.
x=12;x=2\Rightarrow x = \dfrac{{ - 1}}{2};x = - 2
Now coming back to the step where we assumed x=cosxx = \cos x , Substitute back x=cosxx = \cos x in the solutions.
cosx=12;cosx=2\Rightarrow \cos x = \dfrac{{ - 1}}{2};\cos x = - 2
Checking if the values of cosx\cos x exist in the interval [0,2π][0,2\pi ] ,
The expression, cosx=2\cos x = - 2
cosx\cos x cannot be equal to 2- 2 Hence for no value of xx the above condition can be satisfied. The maximum value of cosx\cos x is 11 and minimum value of cosx\cos x is 1- 1 . The range of cosx=1,1\cos x = \\{ - 1,1\\} , so there cannot be a value of xx for which cosx=2\cos x = - 2 .
The expression, cosx=12\cos x = \dfrac{{ - 1}}{2} Since cosx\cos x is negative in 2nd{2^{nd}} and 3rd{3^{rd}} Quadrant,
So, the values of xx should lie in 2nd,3rd{2^{nd}},{3^{rd}} Quadrant in the interval [0,2π][0,2\pi ] . There are two values of cosx\cos x in this range which are,
x=cos1(12)\Rightarrow x = {\cos ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right)
x=cos1(π±π3)\Rightarrow x={{\cos }^{-1}}\left( \pi \pm \dfrac{\pi }{3} \right)

Therefore the solution for the expression 2(sinx)25cosx4=02{(\sin x)^2} - 5\cos x - 4 = 0 in the interval [0,2π][0,2\pi ] is x=2π3;4π3x = \dfrac{{2\pi }}{3};\dfrac{{4\pi }}{3}

Note: Must check where the Trigonometric functions become negative in which Quadrant to easily find the values in the given range. Convert the entire Trigonometric equation in either cosx\cos x or sinx\sin x to easily solve the entire expression as a whole.