Solveeit Logo

Question

Question: How do you solve \(2\cos x - \sin x + 2\cos x\sin x = 1\) in the interval \(0 \leqslant x \leqslant ...

How do you solve 2cosxsinx+2cosxsinx=12\cos x - \sin x + 2\cos x\sin x = 1 in the interval 0x2π0 \leqslant x \leqslant 2\pi ?

Explanation

Solution

In this problem we have a trigonometric equation in some interval and we are asked to solve the trigonometric equation in the same interval. And to solve this given trigonometric equation we used to square the terms and also we may use some trigonometric identities. Here the value of xx lies in the given interval.

Formula used: 1sin2x=cos2x1 - {\sin ^2}x = {\cos ^2}x
(ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab

Complete step-by-step solution:
The given equation is 2cosxsinx+2cosxsinx=12\cos x - \sin x + 2\cos x\sin x = 1
Given equation can also be written as, 2cosxsinx=12cosxsinx2\cos x - \sin x = 1 - 2\cos x\sin x
Now, squaring on both sides, we get
(2cosxsinx)2=(12cosxsinx)2{(2\cos x - \sin x)^2} = {(1 - 2\cos x\sin x)^2}
Expanding the terms on both sides, by using the formula we get
4cos2x+sin2x4cosxsinx=1+2cos2xsin2x4cosxsinx\Rightarrow 4{\cos ^2}x + {\sin ^2}x - 4\cos x\sin x = 1 + 2{\cos ^2}x{\sin ^2}x - 4\cos x\sin x
Now cancel the common terms on both sides, we get
4cos2x+sin2x=1+2cos2xsin2x(1)\Rightarrow 4{\cos ^2}x + {\sin ^2}x = 1 + 2{\cos ^2}x{\sin ^2}x - - - - - (1)
Here let us change all the terms into cosine and let us take a=cos2xa = {\cos ^2}x, also use the identity 1sin2x=cos2x1 - {\sin ^2}x = {\cos ^2}x in the equation (1).
Equation (1) becomes,
4a+1a=1+4a(1a)\Rightarrow 4a + 1 - a = 1 + 4a(1 - a)
On simplify we get
4a+1a=1+4a4a2\Rightarrow 4a + 1 - a = 1 + 4a - 4{a^2}
Now cancel the common terms on both sides, we get
a=4a2- a = - 4{a^2} Also cancel the minus sign on both sides
a=4a2\Rightarrow a = 4{a^2}
Let’s find the value of aa
a4a2=0\Rightarrow a - 4{a^2} = 0
Taking aa common on both sides we get
a(14a)=0\Rightarrow a(1 - 4a) = 0
On rewriting we get
a=0,14a=0\Rightarrow a = 0,1 - 4a = 0
a=0,a=14\Rightarrow a = 0,a = \dfrac{1}{4}
But we have chosen a=cos2xa = {\cos ^2}x. Let’s substitute the value of aa, we get
cos2x=c=0{\cos ^2}x = c = 0 Or cos2x=c=14{\cos ^2}x = c = \dfrac{1}{4}
Take square root on both sides, we get
cosx=0\cos x = 0 Or cosx=±12\cos x = \pm \dfrac{1}{2}
In the required range, x=π2,x=3π2x = \dfrac{\pi }{2},x = \dfrac{{3\pi }}{2} from the first, x=π3,2π3,4π3,5π3x = \dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3} from the second
Let’s substitute these values in the given equation of left hand side, we get
When x=π2x = \dfrac{\pi }{2},2cos(π2)sin(π2)+2cos(π2)sin(π2)=12\cos \left( {\dfrac{\pi }{2}} \right) - \sin \left( {\dfrac{\pi }{2}} \right) + 2\cos \left( {\dfrac{\pi }{2}} \right)\sin \left( {\dfrac{\pi }{2}} \right) = - 1 This is not correct.
Whenx=π3x = \dfrac{\pi }{3}, 2cos(π3)sin(π3)+2cos(π3)sin(π3)=2(12)32+2(12)322\cos \left( {\dfrac{\pi }{3}} \right) - \sin \left( {\dfrac{\pi }{3}} \right) + 2\cos \left( {\dfrac{\pi }{3}} \right)\sin \left( {\dfrac{\pi }{3}} \right) = 2\left( {\dfrac{1}{2}} \right) - \dfrac{{\sqrt 3 }}{2} + 2\left( {\dfrac{1}{2}} \right)\dfrac{{\sqrt 3 }}{2}
2cos(π3)sin(π3)+2cos(π3)sin(π3)=1\Rightarrow 2\cos \left( {\dfrac{\pi }{3}} \right) - \sin \left( {\dfrac{\pi }{3}} \right) + 2\cos \left( {\dfrac{\pi }{3}} \right)\sin \left( {\dfrac{\pi }{3}} \right) = 1. This is correct.
Whenx=2π3x = \dfrac{{2\pi }}{3}, 2cos(2π3)sin(2π3)+2cos(2π3)sin(2π3)=132\cos \left( {\dfrac{{2\pi }}{3}} \right) - \sin \left( {\dfrac{{2\pi }}{3}} \right) + 2\cos \left( {\dfrac{{2\pi }}{3}} \right)\sin \left( {\dfrac{{2\pi }}{3}} \right) = 1 - \sqrt 3 . This is not correct.
And this similarly for when x=4π3x = \dfrac{{4\pi }}{3}
When x=5π3x = \dfrac{{5\pi }}{3}, 2cos(5π3)sin(5π3)+2cos(5π3)sin(5π3)=12\cos \left( {\dfrac{{5\pi }}{3}} \right) - \sin \left( {\dfrac{{5\pi }}{3}} \right) + 2\cos \left( {\dfrac{{5\pi }}{3}} \right)\sin \left( {\dfrac{{5\pi }}{3}} \right) = 1. This is correct.

Therefore, the required answer is x=π3x = \dfrac{\pi }{3} or x=5π3x = \dfrac{{5\pi }}{3} that is, when we substitute these two values for xx in the left hand side given equation then the equation is satisfied.

Note: In this problem first we solved the given equation and we get cosx=0\cos x = 0 or cosx=±12\cos x = \pm \dfrac{1}{2}.
If x=π2x = \dfrac{\pi }{2} then cosx=0\cos x = 0 also if x=3π2x = \dfrac{{3\pi }}{2} then cosx=0\cos x = 0 .
Like the same way if x=π3x = \dfrac{\pi }{3} then cosx=+12\cos x = + \dfrac{1}{2}, if x=2π3x = \dfrac{{2\pi }}{3} then cosx=12\cos x = - \dfrac{1}{2}, if x=4π3x = \dfrac{{4\pi }}{3} then cosx=12\cos x = - \dfrac{1}{2}, if x=5π3x = \dfrac{{5\pi }}{3} then cosx=12\cos x = \dfrac{1}{2}.
These are things we found in the first part of this problem.
Then simply we substituted these xx values in the given equation to satisfy the equation and in that x=π3,x=5π3x = \dfrac{\pi }{3},x = \dfrac{{5\pi }}{3} satisfied the given equation.