Solveeit Logo

Question

Question: How do you solve \(2-2{{\cos }^{2}}x=5\sin x+3?\)...

How do you solve 22cos2x=5sinx+3?2-2{{\cos }^{2}}x=5\sin x+3?

Explanation

Solution

We can solve this by using different trigonometric identities. There are various methods of solving. Here we can use the use Pythagorean identities i.e. sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1
sin2x=1cos2x{{\sin }^{2}}x=1-{{\cos }^{2}}x by using this identity we can simplify the equation then shift the right side of the equation to the left side and carefully change the sign.

Complete step-by-step answer:
We have to solve this equation
\Rightarrow 22(cos2x)=5sinx+32-2\left( {{\cos }^{2}}x \right)=5\sin x+3
We can write 22cos2x2-2{{\cos }^{2}}x as 2(1cos2x)2\left( 1-{{\cos }^{2}}x \right)
\Rightarrow 2(1cos2x)=5sinx+32\left( 1-{{\cos }^{2}}x \right)=5\sin x+3
Shift right side equation in the left side.
\Rightarrow 2(1cos2x)=5sinx+32\left( 1-{{\cos }^{2}}x \right)=5\sin x+3
We can write 1cos2x=sin2x1-{{\cos }^{2}}x={{\sin }^{2}}x because we know the identity sin2x=(1cos2x){{\sin }^{2}}x=\left( 1-{{\cos }^{2}}x \right)
It is known as Pythagoras identity.
\Rightarrow 2sin2x5sinx3=02{{\sin }^{2}}x-5\sin x-3=0
\Rightarrow 2sin2x6sinx+sinx32{{\sin }^{2}}x-6\sin x+\sin x-3
We will factorise this equation so we gat,
\Rightarrow 2sinx(sinx3)+(sinx3)=02\sin x\left( \sin x-3 \right)+\left( \sin x-3 \right)=0
\Rightarrow (2sinx+1)(sinx3)=0\left( 2\sin x+1 \right)\left( \sin x-3 \right)=0
Therefore 2sinx=12\sin x=1 and sinx=3\sin x=3
As we know sinx\sin x lies between [1,1]\left[ -1,1 \right]
So, sinx3\sin x\ne 3
Therefore 2sinx=12\sin x=-1 or x=12x=-\dfrac{1}{2}
We know from the trigonometry formula.
\Rightarrow sinx=12\sin x=-\dfrac{1}{2}
\Rightarrow sin(30)=12\sin \left( -30 \right)=-\dfrac{1}{2}

And sin210=12\sin 210=-\dfrac{1}{2} we applied trigonometry table so the solution is x=210x=210{}^\circ and x=30x=-30{}^\circ

Additional Information:
We can solve this by another method.
The method is given by
\Rightarrow 22cos2x=5sinx+32-2{{\cos }^{2}}x=5\sin x+3
We can write 22cos2x2-2{{\cos }^{2}}x as 2(1cos2x)2\left( 1-{{\cos }^{2}}x \right)
\Rightarrow 2(1cos2x)=5sinx+32\left( 1-{{\cos }^{2}}x \right)=5\sin x+3
As using Pythagoras identity we can write
\Rightarrow 1cos2x=sin2x1-{{\cos }^{2}}x={{\sin }^{2}}x
Now, 2sin2x=5x+3=02{{\sin }^{2}}x=5x+3=0
Shift the right side equation to the left.
\Rightarrow 2sin2x5sinx3=02{{\sin }^{2}}x-5\sin x-3=0
Now solve this quadratic equation for sinx\sin x by the improved quadratic formula in graphic form.
\Rightarrow D=d2=b24acD={{d}^{2}}={{b}^{2}}-4ac
We know the quadratic equation form
\Rightarrow ax+by+cax+by+c
According to this we have equation
\Rightarrow 2sin2x5sinx=32{{\sin }^{2}}x-5\sin x=3
Where, a=2a=2
b=5b=-5
c=3c=-3
Put the values in formula
\Rightarrow d2=b24ac=(5)24×2×(3){{d}^{2}}={{b}^{2}}-4ac={{\left( -5 \right)}^{2}}-4\times 2\times \left( -3 \right)
\Rightarrow d2=25+24=29{{d}^{2}}=25+24=29
So, the value of d=±7d=\pm 7
There are two real roots sinx=b2a±d2a\sin x=\dfrac{-b}{2a}\pm \dfrac{d}{2a}
(a) sinx=b2a±d2a=52×2±72×2=54±74\sin x=\dfrac{-b}{2a}\pm \dfrac{d}{2a}=\dfrac{-5}{2\times 2}\pm \dfrac{7}{2\times 2}=\dfrac{5}{4}\pm \dfrac{7}{4}
\Rightarrow sinx=5±74=124=3\sin x=\dfrac{5\pm 7}{4}=\dfrac{12}{4}=3
\Rightarrow sinx=3\sin x=3 as rejected as >1>1 and
(b) sinx=24=12\sin x=\dfrac{-2}{4}=-\dfrac{1}{2}
Trigonometry table of special arcs and unit circle.
\Rightarrow sinx=12>x=π6\sin x=-\dfrac{1}{2}>x=-\dfrac{\pi }{6} and x=5π6x=-\dfrac{5\pi }{6}
There co terminals are 11π6\dfrac{11\pi }{6} and 7π6\dfrac{7\pi }{6}
General answers.
\Rightarrow x=7π6+2kπx=\dfrac{7\pi }{6}+2k\pi
\Rightarrow x=11π6+2kπx=\dfrac{11\pi }{6}+2k\pi

Note:
The integer kk could be a positive or negative whole number of 0.0. If kk is negative we are subtracting from the basic in method 2.2. Memorise the trigonometric formula. Because this will lead you to the perfect solution. I would highly recommend memorization.