Solveeit Logo

Question

Question: How do you sketch one cycle of \[y = \sec \left( {2x} \right)?\]...

How do you sketch one cycle of y=sec(2x)?y = \sec \left( {2x} \right)?

Explanation

Solution

We need to know the trigonometric table value for cosθ\cos \theta andsecθ\sec \theta . Also, we need to know the relation between cosθ\cos \theta and secθ\sec \theta . Also, this question involves the operation of addition/ subtraction/ multiplication/ division. Also, we need to know how to assume the xx value, by using the assumed xx value we can set yy the value. We need to know how to sketch graphs by using the xx and yy values.

Complete step by step solution:
The given equation is shown below,
y=sec(2x)(1)y = \sec \left( {2x} \right) \to \left( 1 \right)
We know that,
cosθ=1secθ\cos \theta = \dfrac{1}{{\sec \theta }}
So, first, we would find the value for cosθ\cos \theta , next, we can easily find the values for secθ\sec \theta .
We get,
cos2x=1sec2x\cos 2x = \dfrac{1}{{\sec 2x}}
sec2x=1cos2x(2)\sec 2x = \dfrac{1}{{\cos 2x}} \to \left( 2 \right)
We assume,
x=....π2,0,π2,π,3π2,2π,.....x = ....\dfrac{{ - \pi }}{2},0,\dfrac{\pi }{2},\pi ,\dfrac{{3\pi }}{2},2\pi ,.....
Let substitute x=π2x = \dfrac{{ - \pi }}{2} in the equation (2)\left( 2 \right), we get
(2)sec2x=1cos2x\left( 2 \right) \to \sec 2x = \dfrac{1}{{\cos 2x}}

sec(2×π2)=1cos(2×π2)=1cos(π)=11 sec(2×π2)=1 \sec \left( {2 \times \dfrac{{ - \pi }}{2}} \right) = \dfrac{1}{{\cos \left( {2 \times \dfrac{{ - \pi }}{2}} \right)}} = \dfrac{1}{{\cos \left( { - \pi } \right)}} = \dfrac{1}{1} \\\ \sec \left( {2 \times \dfrac{{ - \pi }}{2}} \right) = 1 \\\

Let substitute x=0x = 0in the equation (2)\left( 2 \right), we get
(2)sec2x=1cos2x\left( 2 \right) \to \sec 2x = \dfrac{1}{{\cos 2x}}

sec(2×0)=1cos(2×0)=1cos0=11 sec(2×0)=1 \sec \left( {2 \times 0} \right) = \dfrac{1}{{\cos \left( {2 \times 0} \right)}} = \dfrac{1}{{\cos 0}} = \dfrac{1}{1} \\\ \sec \left( {2 \times 0} \right) = 1 \\\

Let’s substitutex=π2x = \dfrac{\pi }{2}in the equation(2)\left( 2 \right), we get
(2)sec2x=1cos2x\left( 2 \right) \to \sec 2x = \dfrac{1}{{\cos 2x}}

sec(2×π2)=1cos(2×π2)=1cos(π)=11 sec(2×π2)=1 \sec \left( {2 \times \dfrac{\pi }{2}} \right) = \dfrac{1}{{\cos \left( {2 \times \dfrac{\pi }{2}} \right)}} = \dfrac{1}{{\cos \left( \pi \right)}} = \dfrac{1}{{ - 1}} \\\ \sec \left( {2 \times \dfrac{\pi }{2}} \right) = - 1 \\\

Let’s substitute x=πx = \pi in the equation(2)\left( 2 \right), we get
(2)sec2x=1cos2x\left( 2 \right) \to \sec 2x = \dfrac{1}{{\cos 2x}}

sec(2×π)=1cos(2×π)=1cos2π=11 sec(2×π)=1 \sec \left( {2 \times \pi } \right) = \dfrac{1}{{\cos \left( {2 \times \pi } \right)}} = \dfrac{1}{{\cos 2\pi }} = \dfrac{1}{1} \\\ \sec \left( {2 \times \pi } \right) = 1 \\\

Let’s substitute x=3π2x = \dfrac{{3\pi }}{2} in the equation(2)\left( 2 \right), we get
(2)sec2x=1cos2x\left( 2 \right) \to \sec 2x = \dfrac{1}{{\cos 2x}}

sec(2×3π2)=1cos(2×3π2)=1cos(3π)=11 sec(2×3π2)=1 \sec \left( {2 \times \dfrac{{3\pi }}{2}} \right) = \dfrac{1}{{\cos \left( {2 \times \dfrac{{3\pi }}{2}} \right)}} = \dfrac{1}{{\cos \left( {3\pi } \right)}} = \dfrac{1}{{ - 1}} \\\ \sec \left( {2 \times \dfrac{{3\pi }}{2}} \right) = - 1 \\\

Let’s substitute x=2πx = 2\pi in the equation (2)\left( 2 \right), we get
(2)sec2x=1cos2x\left( 2 \right) \to \sec 2x = \dfrac{1}{{\cos 2x}}

sec(2×2π)=1cos(2×2π)=1cos4π=11 sec(2×2π)=1 \sec \left( {2 \times 2\pi } \right) = \dfrac{1}{{\cos \left( {2 \times 2\pi } \right)}} = \dfrac{1}{{\cos 4\pi }} = \dfrac{1}{1} \\\ \sec \left( {2 \times 2\pi } \right) = 1 \\\

By using these values we can make the following tabular column,

xxπ2\dfrac{{- \pi}}{2}00π2\dfrac{\pi}{2}π\pi 3π2\dfrac{{3\pi}}{2}2π2\pi
y=sec2xy =\sec2x11111 - 1111 - 111

By using this tabular column we can easily make the following graph,

The above graph shows the one cycle of sec2x\sec 2x

Note: Note that when θ\theta is the end with π2\dfrac{\pi }{2} the term, all cosθ\cos \theta value becomes zero. Also, note that when θ\theta has an odd π\pi term, all the cosθ\cos \theta values become 1 - 1 and when θ\theta has an even π\pi term, all the cosθ\cos \theta values become 11. Note that when the denominator value becomes zero, then the answer becomes undefined. This question involves the operation of addition / subtraction/ multiplication/ division. Also, note that cosθ\cos \theta is the inverse value of secθ\sec \theta . Remember the trigonometric table values to make easy calculations.