Solveeit Logo

Question

Question: How do you simplify the given sum: \(\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x}\)?...

How do you simplify the given sum: sinx1+cosx+sinx1cosx\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x}?

Explanation

Solution

We start solving the problem by equating the given sum to a variable. We then make use of the fact that sinx=2sinx2cosx2\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}, 1+cosx=2cos2x21+\cos x=2{{\cos }^{2}}\dfrac{x}{2} and 1cosx=2sin2x21-\cos x=2{{\sin }^{2}}\dfrac{x}{2} to proceed through the problem. We then make the necessary calculations and then make use of the fact that sinθcosθ=tanθ\dfrac{\sin \theta }{\cos \theta }=\tan \theta and cosθsinθ=cotθ\dfrac{\cos \theta }{\sin \theta }=\cot \theta to proceed further through the problem. We then make the necessary calculations and make use of the fact that 1+tan2x2=sec2x21+{{\tan }^{2}}\dfrac{x}{2}={{\sec }^{2}}\dfrac{x}{2}, tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }, secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } and 1sinx=cosecx\dfrac{1}{\sin x}=\operatorname{cosec}x to get the required answer.

Complete step by step answer:
According to the problem, we are asked to find the result of the given sum: sinx1+cosx+sinx1cosx\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x}.
Let us assume d=sinx1+cosx+sinx1cosxd=\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x} ---(1).
We know that sinx=2sinx2cosx2\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}, 1+cosx=2cos2x21+\cos x=2{{\cos }^{2}}\dfrac{x}{2} and 1cosx=2sin2x21-\cos x=2{{\sin }^{2}}\dfrac{x}{2}. Let us use these results in equation (2).
d=2sinx2cosx22cos2x2+2sinx2cosx22sin2x2\Rightarrow d=\dfrac{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}{2{{\cos }^{2}}\dfrac{x}{2}}+\dfrac{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}{2{{\sin }^{2}}\dfrac{x}{2}}.
d=sinx2cosx2+cosx2sinx2\Rightarrow d=\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}+\dfrac{\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}} ---(2).
We know that sinθcosθ=tanθ\dfrac{\sin \theta }{\cos \theta }=\tan \theta and cosθsinθ=cotθ\dfrac{\cos \theta }{\sin \theta }=\cot \theta . Let us use these results in equation (2).
d=tanx2+cotx2\Rightarrow d=\tan \dfrac{x}{2}+\cot \dfrac{x}{2} ---(3).
We know that cotθ=1tanθ\cot \theta =\dfrac{1}{\tan \theta }. Let us use this result in equation (3).
d=tanx2+1tanx2\Rightarrow d=\tan \dfrac{x}{2}+\dfrac{1}{\tan \dfrac{x}{2}}.
d=tan2x2+1tanx2\Rightarrow d=\dfrac{{{\tan }^{2}}\dfrac{x}{2}+1}{\tan \dfrac{x}{2}} ---(4).
We know that 1+tan2x2=sec2x21+{{\tan }^{2}}\dfrac{x}{2}={{\sec }^{2}}\dfrac{x}{2}. Let us use this result in equation (4).
d=sec2x2tanx2\Rightarrow d=\dfrac{{{\sec }^{2}}\dfrac{x}{2}}{\tan \dfrac{x}{2}} ---(5).
We know that tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } and secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta }. Let us use these results in equation (5).
d=1cos2x2sinx2cosx2\Rightarrow d=\dfrac{\dfrac{1}{{{\cos }^{2}}\dfrac{x}{2}}}{\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}}.
d=1sinx2cosx2\Rightarrow d=\dfrac{1}{\sin \dfrac{x}{2}\cos \dfrac{x}{2}}.
d=22sinx2cosx2\Rightarrow d=\dfrac{2}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} ---(6).
We know that sinx=2sinx2cosx2\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}. Let us use this result in equation (6).
d=2sinx\Rightarrow d=\dfrac{2}{\sin x} ---(7).
We know that 1sinx=cosecx\dfrac{1}{\sin x}=\operatorname{cosec}x. Let us use this result in equation (7).
d=2cosecx\Rightarrow d=2\operatorname{cosec}x.
So, we have found the simplified form of the given sum sinx1+cosx+sinx1cosx\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x} as 2cosecx2\operatorname{cosec}x.
\therefore The simplified form of the given sum sinx1+cosx+sinx1cosx\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x} is 2cosecx2\operatorname{cosec}x.

Note:
We can also solve the given problem as shown below:
We have given d=sinx1+cosx+sinx1cosxd=\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x}.
d=sinx(1cosx)+sinx(1+cosx)(1+cosx)(1cosx)\Rightarrow d=\dfrac{\sin x\left( 1-\cos x \right)+\sin x\left( 1+\cos x \right)}{\left( 1+\cos x \right)\left( 1-\cos x \right)}.
d=sinxsinxcosx+sinx+sinxcosx1cosx+cosxcos2x\Rightarrow d=\dfrac{\sin x-\sin x\cos x+\sin x+\sin x\cos x}{1-\cos x+\cos x-{{\cos }^{2}}x}.
d=2sinx1cos2x\Rightarrow d=\dfrac{2\sin x}{1-{{\cos }^{2}}x} ---(8).
We know that sin2x=1cos2x{{\sin }^{2}}x=1-{{\cos }^{2}}x. Let us use this result in equation (8).
d=2sinxsin2x\Rightarrow d=\dfrac{2\sin x}{{{\sin }^{2}}x}.
d=2sinx\Rightarrow d=\dfrac{2}{\sin x} ---(9).
We know that 1sinx=cosecx\dfrac{1}{\sin x}=\operatorname{cosec}x. Let us use this result in equation (9).
d=2cosecx\Rightarrow d=2\operatorname{cosec}x.