Question
Question: How do you simplify the given sum: \(\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x}\)?...
How do you simplify the given sum: 1+cosxsinx+1−cosxsinx?
Solution
We start solving the problem by equating the given sum to a variable. We then make use of the fact that sinx=2sin2xcos2x, 1+cosx=2cos22x and 1−cosx=2sin22x to proceed through the problem. We then make the necessary calculations and then make use of the fact that cosθsinθ=tanθ and sinθcosθ=cotθ to proceed further through the problem. We then make the necessary calculations and make use of the fact that 1+tan22x=sec22x, tanθ=cosθsinθ, secθ=cosθ1 and sinx1=cosecx to get the required answer.
Complete step by step answer:
According to the problem, we are asked to find the result of the given sum: 1+cosxsinx+1−cosxsinx.
Let us assume d=1+cosxsinx+1−cosxsinx ---(1).
We know that sinx=2sin2xcos2x, 1+cosx=2cos22x and 1−cosx=2sin22x. Let us use these results in equation (2).
⇒d=2cos22x2sin2xcos2x+2sin22x2sin2xcos2x.
⇒d=cos2xsin2x+sin2xcos2x ---(2).
We know that cosθsinθ=tanθ and sinθcosθ=cotθ. Let us use these results in equation (2).
⇒d=tan2x+cot2x ---(3).
We know that cotθ=tanθ1. Let us use this result in equation (3).
⇒d=tan2x+tan2x1.
⇒d=tan2xtan22x+1 ---(4).
We know that 1+tan22x=sec22x. Let us use this result in equation (4).
⇒d=tan2xsec22x ---(5).
We know that tanθ=cosθsinθ and secθ=cosθ1. Let us use these results in equation (5).
⇒d=cos2xsin2xcos22x1.
⇒d=sin2xcos2x1.
⇒d=2sin2xcos2x2 ---(6).
We know that sinx=2sin2xcos2x. Let us use this result in equation (6).
⇒d=sinx2 ---(7).
We know that sinx1=cosecx. Let us use this result in equation (7).
⇒d=2cosecx.
So, we have found the simplified form of the given sum 1+cosxsinx+1−cosxsinx as 2cosecx.
∴ The simplified form of the given sum 1+cosxsinx+1−cosxsinx is 2cosecx.
Note:
We can also solve the given problem as shown below:
We have given d=1+cosxsinx+1−cosxsinx.
⇒d=(1+cosx)(1−cosx)sinx(1−cosx)+sinx(1+cosx).
⇒d=1−cosx+cosx−cos2xsinx−sinxcosx+sinx+sinxcosx.
⇒d=1−cos2x2sinx ---(8).
We know that sin2x=1−cos2x. Let us use this result in equation (8).
⇒d=sin2x2sinx.
⇒d=sinx2 ---(9).
We know that sinx1=cosecx. Let us use this result in equation (9).
⇒d=2cosecx.