Solveeit Logo

Question

Question: How do you simplify the following expression to a single trigonometric function \[\dfrac{{\sin x}}{{...

How do you simplify the following expression to a single trigonometric function sinx1cosxcosecx\dfrac{{\sin x}}{{1 - \cos x}} - \cos ecx ?

Explanation

Solution

In order to solve this equation we will use a simple approach. We will convert the cosec function to sin and then we will take the LCM. After this we will be using the fundamental identity of trigonometric functions to find the single trigonometric function.

Complete step by step solution:
Given that sinx1cosxcosecx\dfrac{{\sin x}}{{1 - \cos x}} - \cos ecx.We know that cosecx\cos ecx can be written as 1sinx\dfrac{1}{{\sin x}}. So rewriting the equation,
sinx1cosx1sinx\dfrac{{\sin x}}{{1 - \cos x}} - \dfrac{1}{{\sin x}}
Taking the LCM we get,
sinx.sinx(1cosx)sinx(1cosx)\dfrac{{\sin x.\sin x - \left( {1 - \cos x} \right)}}{{\sin x\left( {1 - \cos x} \right)}}
On multiplying the sin terms we get,
sin2x(1cosx)sinx(1cosx)\dfrac{{{{\sin }^2}x - \left( {1 - \cos x} \right)}}{{\sin x\left( {1 - \cos x} \right)}}
On multiplying the minus with bracket,
sin2x1+cosxsinx(1cosx)\dfrac{{{{\sin }^2}x - 1 + \cos x}}{{\sin x\left( {1 - \cos x} \right)}}
We know that sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 can be written as, sin2x1=cos2x{\sin ^2}x - 1 = - {\cos ^2}x

So we can write the above equation as ,
cos2x+cosxsinx(1cosx)\dfrac{{ - {{\cos }^2}x + \cos x}}{{\sin x\left( {1 - \cos x} \right)}}
On rearranging the terms
cosxcos2xsinx(1cosx)\dfrac{{\cos x - {{\cos }^2}x}}{{\sin x\left( {1 - \cos x} \right)}}
Taking cos function common,
cosx(1cosx)sinx(1cosx)\dfrac{{\cos x\left( {1 - \cos x} \right)}}{{\sin x\left( {1 - \cos x} \right)}}
Cancelling the common bracket,
cosxsinx\dfrac{{\cos x}}{{\sin x}}
We know that cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}}

Thus the final answer is sinx1cosxcosecx=cotx\dfrac{{\sin x}}{{1 - \cos x}} - \cos ecx = \cot x.

Note: Here note that cosec function is the indicator to proceed towards the solution because the numerator of first terms is a sin function that is reciprocal of cosec function. We have to convert the given expression to a single function so try to write the ratios or terms nearer to a same function or such that we can use the different trigonometric identities to get the single function.