Solveeit Logo

Question

Question: How do you simplify the expression \(\sec \left( {{\tan }^{-1}}\left( x \right) \right)\)...

How do you simplify the expression sec(tan1(x))\sec \left( {{\tan }^{-1}}\left( x \right) \right)

Explanation

Solution

To simplify the expression we will first assume tan1x=y{{\tan }^{-1}}x=y . Now we will apply tan function on both sides and simplify. Now we will try to convert tan into sec by using identity 1+tan2x=sec2x1+{{\tan }^{2}}x={{\sec }^{2}}x . Hence we will easily find the value of sec2y{{\sec }^{2}}y and take square root to find the value of secy\sec y . Now re-substituting the value of y we will get the required equation.

Complete step-by-step solution:
Now first let us understand the concept of inverse function. Inverse functions are functions which reverse the role of the original function. Hence if we have f(x)=yf\left( x \right)=y then f1(y)=x{{f}^{-1}}\left( y \right)=x . Now from the two equations we can substitute the value of x to write f(f1y)=yf\left( {{f}^{-1}}y \right)=y .
For example consider f(x)=2xf\left( x \right)=2x then f1(x)=x2{{f}^{-1}}\left( x \right)=\dfrac{x}{2} .
Now let us consider y=tan1xy={{\tan }^{-1}}x
Then applying tan function on both sides we get, tany=tan(tan1x)\tan y=\tan \left( {{\tan }^{-1}}x \right)
But we know that tan1(tanx)=tan(tan1x)=x{{\tan }^{-1}}\left( \tan x \right)=\tan \left( {{\tan }^{-1}}x \right)=x hence we get,
tany=x\Rightarrow \tan y=x
Now we want to convert tan into sec hence we will try to bring it in the form tan2y+1{{\tan }^{2}}y+1
Now squaring on both sides we get,
tan2y=x2\Rightarrow {{\tan }^{2}}y={{x}^{2}}
Now adding 1 on both sides we get,
tan2y+1=x2+1\Rightarrow {{\tan }^{2}}y+1={{x}^{2}}+1
Now we know that 1+tan2x=sec2x1+{{\tan }^{2}}x={{\sec }^{2}}x hence using this we get,
sec2y=x2+1\Rightarrow {{\sec }^{2}}y={{x}^{2}}+1
Now taking square root on both sides we get,
secy=x2+1\Rightarrow \sec y=\sqrt{{{x}^{2}}+1}
Now let us re-substitute the value of y. Hence substituting y=tan1xy={{\tan }^{-1}}x we get,
sec(tan1(x))=x2+1\Rightarrow \sec \left( {{\tan }^{-1}}\left( x \right) \right)=\sqrt{{{x}^{2}}+1}

Note: We can also solve the equation without using the identity 1+tan2x=sec2x1+{{\tan }^{2}}x={{\sec }^{2}}x . Consider the equation tan2y+1=x2+1{{\tan }^{2}}y+1={{x}^{2}}+1 converting tan in sin and cos we get, sin2xcos2x+1=x2+1\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}+1=\sqrt{{{x}^{2}}+1} .
Now taking LCM and then using sin2+cos2=1{{\sin }^{2}}+{{\cos }^{2}}=1 we will get the required equation. Also note that inverse functions are just represented by f1{{f}^{-1}} and are not equal to 1f\dfrac{1}{f}.