Solveeit Logo

Question

Question: How do you simplify the expression \[{{i}^{44}}+{{i}^{150}}-{{i}^{74}}-{{i}^{109}}+{{i}^{61}}\]?...

How do you simplify the expression i44+i150i74i109+i61{{i}^{44}}+{{i}^{150}}-{{i}^{74}}-{{i}^{109}}+{{i}^{61}}?

Explanation

Solution

In order to find the solution of the given question that is to simplify i44+i150i74i109+i61{{i}^{44}}+{{i}^{150}}-{{i}^{74}}-{{i}^{109}}+{{i}^{61}} use the one of the well-known properties of iota in complex numbers that is i2=1{{i}^{2}}=-1 to simplify the given expression and also use the result that i4n=1{{i}^{4n}}=1 where n is any natural number.

Complete step-by-step solution:
According to the question, given expression in the question is as follows:
i44+i150i74i109+i61{{i}^{44}}+{{i}^{150}}-{{i}^{74}}-{{i}^{109}}+{{i}^{61}}
We will solve each five term individually then substitute its value in the given expression, so first we will solve i44{{i}^{44}}, here we will have:
i44=(i4)11\Rightarrow {{i}^{44}}={{\left( {{i}^{4}} \right)}^{11}}
We will use the following the property of iota in complex number that is i4n=1{{i}^{4n}}=1 where n is any natural number in the above equation, we will get:
i44=(1)11\Rightarrow {{i}^{44}}={{\left( 1 \right)}^{11}}
i44=1\Rightarrow {{i}^{44}}=1
Now we will solve for i150{{i}^{150}}, we will have:
i150=(i4)37i2\Rightarrow {{i}^{150}}={{\left( {{i}^{4}} \right)}^{37}}\cdot {{i}^{2}}
To simplify the above equation, we will use the following two properties of iota in complex number that is i2=1{{i}^{2}}=-1 and i4n=1{{i}^{4n}}=1 where n is any natural number, we get:
i150=(1)37i2\Rightarrow {{i}^{150}}={{\left( 1 \right)}^{37}}\cdot {{i}^{2}}
i150=1i2\Rightarrow {{i}^{150}}=1\cdot {{i}^{2}}
i150=1\Rightarrow {{i}^{150}}=-1
After this we will solve for i74{{i}^{74}}, we will have:
i74=(i4)18i2\Rightarrow {{i}^{74}}={{\left( {{i}^{4}} \right)}^{18}}\cdot {{i}^{2}}
To simplify the above equation, we will use the following two properties of iota in complex number that is i2=1{{i}^{2}}=-1 and i4n=1{{i}^{4n}}=1 where n is any natural number, we get:
i74=(1)18i2\Rightarrow {{i}^{74}}={{\left( 1 \right)}^{18}}\cdot {{i}^{2}}
i74=1i2\Rightarrow {{i}^{74}}=1\cdot {{i}^{2}}
i74=1\Rightarrow {{i}^{74}}=-1
Now solve for the term i109{{i}^{109}}, we will have:
i109=(i4)27i\Rightarrow {{i}^{109}}={{\left( {{i}^{4}} \right)}^{27}}\cdot i
We will use the following the property of iota in complex number that is i4n=1{{i}^{4n}}=1 where n is any natural number in the above equation, we will get:
i109=(1)27i\Rightarrow {{i}^{109}}={{\left( 1 \right)}^{27}}\cdot i
i109=1i\Rightarrow {{i}^{109}}=1\cdot i
i109=i\Rightarrow {{i}^{109}}=i
At last, we will solve for i61{{i}^{61}}, we get:
i61=(i4)15i\Rightarrow {{i}^{61}}={{\left( {{i}^{4}} \right)}^{15}}\cdot i
We will use the following the property of iota in complex number that is i4n=1{{i}^{4n}}=1 where n is any natural number in the above equation, we will get:
i61=(1)15i\Rightarrow {{i}^{61}}={{\left( 1 \right)}^{15}}\cdot i
i61=1i\Rightarrow {{i}^{61}}=1\cdot i
i61=i\Rightarrow {{i}^{61}}=i
Now substitute the values of all the five terms in the given expression, we will get:
i44+i150i74i109+i61=1+(1)(1)i+i\Rightarrow {{i}^{44}}+{{i}^{150}}-{{i}^{74}}-{{i}^{109}}+{{i}^{61}}=1+\left( -1 \right)-\left( -1 \right)-i+i
i44+i150i74i109+i61=11+1i+i\Rightarrow {{i}^{44}}+{{i}^{150}}-{{i}^{74}}-{{i}^{109}}+{{i}^{61}}=1-1+1-i+i
i44+i150i74i109+i61=1\Rightarrow {{i}^{44}}+{{i}^{150}}-{{i}^{74}}-{{i}^{109}}+{{i}^{61}}=1
Therefore, the value of the expression i44+i150i74i109+i61{{i}^{44}}+{{i}^{150}}-{{i}^{74}}-{{i}^{109}}+{{i}^{61}} is 11.

Note: Students make mistakes because using the wrong property of iota in complex numbers, that is, they use i=1i=-1 which is completely incorrect and leads to the wrong answer. It’s important to remember that i2=1{{i}^{2}}=-1.