Solveeit Logo

Question

Question: How do you simplify \(\tan \left( {2x} \right) \times \tan \left( {2x} \right)\)?...

How do you simplify tan(2x)×tan(2x)\tan \left( {2x} \right) \times \tan \left( {2x} \right)?

Explanation

Solution

This problem deals with solving the given equation with trigonometric identities and compound sum angles of trigonometric functions. A compound angle formula or addition formula is a trigonometric identity which expresses a trigonometric function of (A+B)\left( {A + B} \right) or (AB)\left( {A - B} \right) in terms of trigonometric functions of AA and BB.

Formula Used:
tan(A+B)=tanA+tanB1tanAtanB\Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
Here when A=B,A = B, then tan(A+B)=tan2A\tan \left( {A + B} \right) = \tan 2A, which is given by:
tan(2A)=2tanA1tan2A\Rightarrow \tan \left( {2A} \right) = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}

Complete step-by-step answer:
Given an expression of trigonometric tangent expression functions.
The given expression is tan(2x)×tan(2x)\tan \left( {2x} \right) \times \tan \left( {2x} \right), consider this as given below:
tan(2x)×tan(2x)\Rightarrow \tan \left( {2x} \right) \times \tan \left( {2x} \right)
Consider tan(2x)\tan \left( {2x} \right), we know that from the tangent compound angle formula, it can be written as given below:
tan(2x)=2tanx1tan2x\Rightarrow \tan \left( {2x} \right) = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}
Hence substituting this in the given expression tan(2x)×tan(2x)\tan \left( {2x} \right) \times \tan \left( {2x} \right), as shown below:
tan(2x)×tan(2x)\Rightarrow \tan \left( {2x} \right) \times \tan \left( {2x} \right)
(2tanx1tan2x)(2tanx1tan2x)\Rightarrow \left( {\dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}} \right)\left( {\dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}} \right)
Now simplifying the above and solving as given below:
4tan2x(1tan2x)(1tan2x)\Rightarrow \dfrac{{4{{\tan }^2}x}}{{\left( {1 - {{\tan }^2}x} \right)\left( {1 - {{\tan }^2}x} \right)}}
Now simplifying the denominator, by multiplying both the expressions with each other, as shown below:
4tan2x(1tan2x)2\Rightarrow \dfrac{{4{{\tan }^2}x}}{{{{\left( {1 - {{\tan }^2}x} \right)}^2}}}
As it can be written as the square of the expression, as both the expressions are one and the same, as shown in the above expression.
Now simplifying the square of the given expression, as shown below:
4tan2x12tan2x+tan4x\Rightarrow \dfrac{{4{{\tan }^2}x}}{{1 - 2{{\tan }^2}x + {{\tan }^4}x}}
So the simplification of the product of the two expressions can be written as:
tan(2x)×tan(2x)=4tan2x12tan2x+tan4x\therefore \tan \left( {2x} \right) \times \tan \left( {2x} \right) = \dfrac{{4{{\tan }^2}x}}{{1 - 2{{\tan }^2}x + {{\tan }^4}x}}

Final Answer: The expression tan(2x)×tan(2x)\tan \left( {2x} \right) \times \tan \left( {2x} \right) is equal to 4tan2x12tan2x+tan4x\dfrac{{4{{\tan }^2}x}}{{1 - 2{{\tan }^2}x + {{\tan }^4}x}}.

Note:
Please note that the formula of cosine compound angles formula is used to solve this problem. Here instead of simplifying the product of the expressions of tan(2x)\tan \left( {2x} \right), we can directly square them first as given the product of tan(2x)\tan \left( {2x} \right) and itself, and then hence simplify the expression of the square, which gives the same final answer. But there are a few other trigonometric compound angle formulas of sine, cosine and tangent, which are shown below:
sin(A+B)=sinAcosB+cosAsinB\Rightarrow \sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B
sin(AB)=sinAcosBcosAsinB\Rightarrow \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B
cos(A+B)=cosAcosBsinAsinB\Rightarrow \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B
cos(AB)=cosAcosB+sinAsinB\Rightarrow \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B
tan(A+B)=tanA+tanB1tanAtanB\Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
tan(AB)=tanAtanB1+tanAtanB\Rightarrow \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}