Solveeit Logo

Question

Question: How do you simplify: \(\sin \left( {x + \dfrac{\pi }{4}} \right)\) ?...

How do you simplify: sin(x+π4)\sin \left( {x + \dfrac{\pi }{4}} \right) ?

Explanation

Solution

The given question deals with basic simplification of trigonometric functions by using some of the simple trigonometric formulae such as the compound angle formulae for sine function sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B. Basic algebraic rules and trigonometric identities are to be kept in mind while doing simplification in the given problem.

Complete answer:
In the given problem, we have to simplify the trigonometric expression given to us as: sin(x+π4)\sin \left( {x + \dfrac{\pi }{4}} \right)
So, we will use the compound angle formula for sine function as sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B where A=xA = x and B=(π4)B = \left( {\dfrac{\pi }{4}} \right). Hence, we get the expanded form as,
sin(x+π4)=sinxcos(π4)+cosxsin(π4)\Rightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) = \sin x\cos \left( {\dfrac{\pi }{4}} \right) + \cos x\sin \left( {\dfrac{\pi }{4}} \right)
Now, we have to substitute in the values of cosine and sine function for the angle (π4)\left( {\dfrac{\pi }{4}} \right) and then get the simplified form of the trigonometric expression.
We know that the value of cosine function for the standard angle (π4)\left( {\dfrac{\pi }{4}} \right) is cos(π4)=12\cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }} and value of sine function for the same angle is sin(π4)=12\sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}.
So, we get,
sin(x+π4)=sinx(12)+cosx(12)\Rightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) = \sin x\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \cos x\left( {\dfrac{1}{{\sqrt 2 }}} \right)
Now, taking the common terms outside the brackets, we get,
sin(x+π4)=(12)(sinx+cosx)\Rightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\sin x + \cos x} \right)
Hence, the simplified form of the trigonometric expression sin(x+π4)\sin \left( {x + \dfrac{\pi }{4}} \right) can be simplified as (12)(sinx+cosx)\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\sin x + \cos x} \right) by the use of basic algebraic rules and simple trigonometric formulae.

Note:
Trigonometric functions are also called Circular functions. Trigonometric functions are the functions that relate an angle of a right angled triangle to the ratio of two side lengths. There are 66trigonometric functions, namely: sin(x)\sin (x),cos(x)\cos (x),tan(x)\tan (x),cosec(x)\cos ec(x),sec(x)\sec (x)and cot(x)\cot \left( x \right) . We must know the compound angle formulae of sine as sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B and cosine as cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B.