Solveeit Logo

Question

Question: How do you simplify \[\sin \left( {\dfrac{\theta }{2}} \right)\] using the double angle identities?...

How do you simplify sin(θ2)\sin \left( {\dfrac{\theta }{2}} \right) using the double angle identities?

Explanation

Solution

Hint : In order to find the solution to this particular numerical, we will use the double angle formula of cosine function in the form of sine function i.e., cos2θ=12sin2θ\cos 2\theta = 1 - 2{\sin ^2}\theta .From the formula, first of all we will find the value of sinθ\sin \theta .After that we will replace θ\theta by θ2\dfrac{\theta }{2} and simplify the expression. After simplification we will get the required result.

Complete step-by-step answer :
We have given sin(θ2)\sin \left( {\dfrac{\theta }{2}} \right) and we have to simplify it using a double angle identity.
In order to simplify sin(θ2)\sin \left( {\dfrac{\theta }{2}} \right) we will first apply the double angle formula of cosine function in the form of sine function.
The double angle formula is as follows:
cos2θ=12sin2θ (i)\cos 2\theta = 1 - 2{\sin ^2}\theta {\text{ }} - - - \left( i \right)
Now, we will find out the value of sinθ\sin \theta
So, from equation (i)\left( i \right) we have,
cos2θ1=2sin2θ \cos 2\theta - 1 = - 2{\sin ^2}\theta {\text{ }}
Now, on dividing by 2 - 2 on both sides, we get
cos2θ12=sin2θ \dfrac{{\cos 2\theta - 1}}{{ - 2}} = {\sin ^2}\theta {\text{ }}
On multiplying by 1 - 1 on the left-hand side of the above expression, we get
1(cos2θ1)1(2)=sin2θ \dfrac{{ - 1 \cdot \left( {\cos 2\theta - 1} \right)}}{{ - 1 \cdot \left( { - 2} \right)}} = {\sin ^2}\theta {\text{ }}
On simplification, we get
1cos2θ2=sin2θ \dfrac{{1 - \cos 2\theta }}{2} = {\sin ^2}\theta {\text{ }}
Now, on taking square root on both the sides, we get
1cos2θ2=sin2θ \sqrt {\dfrac{{1 - \cos 2\theta }}{2}} = \sqrt {{{\sin }^2}\theta {\text{ }}}
±1cos2θ2=sinθ\Rightarrow \pm \sqrt {\dfrac{{1 - \cos 2\theta }}{2}} = \sin \theta
Thus, we get the value of sinθ\sin \theta as ±1cos2θ2\pm \sqrt {\dfrac{{1 - \cos 2\theta }}{2}}
Now, we will replace θ\theta by θ2\dfrac{\theta }{2}
Therefore, we get
sinθ2= ±1cos2θ22\sin \dfrac{\theta }{2} = {\text{ }} \pm \sqrt {\dfrac{{1 - \cos 2\dfrac{\theta }{2}}}{2}}
On simplifying it, we get
sinθ2= ±1cosθ2\sin \dfrac{\theta }{2} = {\text{ }} \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}}
Hence, we get our required result.
So, the correct answer is “sinθ2= ±1cosθ2\sin \dfrac{\theta }{2} = {\text{ }} \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} ”.

Note : This question can also be solved by using another double angle formula of cosine function which is in the form of cosine itself.
The formula is as follows:
cos2θ=2cos2θ1\cos 2\theta = 2{\cos ^2}\theta - 1
First of all, let us assume sinθ2=x (1)\sin \dfrac{\theta }{2} = x{\text{ }} - - - \left( 1 \right)
We know that sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
Therefore, sin2θ2+cos2θ2=1{\sin ^2}\dfrac{\theta }{2} + {\cos ^2}\dfrac{\theta }{2} = 1
cos2θ2=1sin2θ2\Rightarrow {\cos ^2}\dfrac{\theta }{2} = 1 - {\sin ^2}\dfrac{\theta }{2}
Put the value of sinθ2\sin \dfrac{\theta }{2} we get
cos2θ2=1x2\Rightarrow {\cos ^2}\dfrac{\theta }{2} = 1 - {x^2}
Now, using the formula, i.e., cos2θ=2cos2θ1\cos 2\theta = 2{\cos ^2}\theta - 1
On replacing θ\theta by θ2\dfrac{\theta }{2} we get
cosθ=2cos2θ21\cos \theta = 2{\cos ^2}\dfrac{\theta }{2} - 1
Now, on substituting the value of cos2θ2{\cos ^2}\dfrac{\theta }{2} we get,
cosθ=2(1x2)1\cos \theta = 2\left( {1 - {x^2}} \right) - 1
cosθ=22x21\Rightarrow \cos \theta = 2 - 2{x^2} - 1
cosθ=12x2\Rightarrow \cos \theta = 1 - 2{x^2}
After taking xx terms on the left-hand side and constants term of the right-hand side, we get
2x2=1cosθ2{x^2} = 1 - \cos \theta
On dividing by 22 we get
x2=1cosθ2{x^2} = \dfrac{{1 - \cos \theta }}{2}
x=1cosθ2\Rightarrow x = \sqrt {\dfrac{{1 - \cos \theta }}{2}}
From (1)\left( 1 \right) , we have
sinθ2=1cosθ2\Rightarrow \sin \dfrac{\theta }{2} = \sqrt {\dfrac{{1 - \cos \theta }}{2}}
Hence, we get the required result.