Solveeit Logo

Question

Question: How do you simplify \[\sin \left( {{\cos }^{-1}}\left( -\dfrac{1}{4} \right) \right)\]?...

How do you simplify sin(cos1(14))\sin \left( {{\cos }^{-1}}\left( -\dfrac{1}{4} \right) \right)?

Explanation

Solution

This type of question is based on the concept of trigonometry. We should first substitute α=cos1(14)\alpha ={{\cos }^{-1}}\left( -\dfrac{1}{4} \right). Now we have to simplify sin(α)\sin \left( \alpha \right). Take cos on both the sides of α=cos1(14)\alpha ={{\cos }^{-1}}\left( -\dfrac{1}{4} \right) and use the inverse trigonometric identity cos(cos1θ)=θ\cos \left( {{\cos }^{-1}}\theta \right)=\theta to find the value of cos(α)\cos \left( \alpha \right). Now, using the trigonometric identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 find the value of sin(α)\sin \left( \alpha \right) which is sin(cos1(14))\sin \left( {{\cos }^{-1}}\left( -\dfrac{1}{4} \right) \right). Thus, we get the required answer.

Complete step-by-step solution:
According to the question, we are asked to simplify sin(cos1(14))\sin \left( {{\cos }^{-1}}\left( -\dfrac{1}{4} \right) \right).
We have been given the function is sin(cos1(14))\sin \left( {{\cos }^{-1}}\left( -\dfrac{1}{4} \right) \right). ---------(1)
First, let us assume α=cos1(14)\alpha ={{\cos }^{-1}}\left( -\dfrac{1}{4} \right).
Therefore, the function to be simplified is sinα\sin \alpha .
Now take cos on both the sides of the above expression.
We get cosα=cos(cos1(14))\cos \alpha =\cos \left( {{\cos }^{-1}}\left( -\dfrac{1}{4} \right) \right).
Using the inverse trigonometric identity, that is, cos(cos1θ)=θ\cos \left( {{\cos }^{-1}}\theta \right)=\theta , we get
cosα=14\cos \alpha =-\dfrac{1}{4}
We have now found the value of cosα\cos \alpha .
We have to find the value of sinα\sin \alpha .
Let us use the trigonometric identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 to find sinα\sin \alpha .
Therefore, sin2α+cos2α=1{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1.
Substituting the value of cosα\cos \alpha , we get
sin2α+(14)2=1\Rightarrow {{\sin }^{2}}\alpha +{{\left( -\dfrac{1}{4} \right)}^{2}}=1
We know that (ab)2=a2b2{{\left( \dfrac{a}{b} \right)}^{2}}=\dfrac{{{a}^{2}}}{{{b}^{2}}}. Using this property in the above expression, we get
sin2α+1242=1\Rightarrow {{\sin }^{2}}\alpha +\dfrac{{{1}^{2}}}{{{4}^{2}}}=1
On further simplification, we get
sin2α+116=1\Rightarrow {{\sin }^{2}}\alpha +\dfrac{1}{16}=1
Let us now subtract 116\dfrac{1}{16} from both the sides of the equation.
sin2α+116116=1116\Rightarrow {{\sin }^{2}}\alpha +\dfrac{1}{16}-\dfrac{1}{16}=1-\dfrac{1}{16}
sin2α=1116\Rightarrow {{\sin }^{2}}\alpha =1-\dfrac{1}{16}
Take LCM in the right-hand side of the equation.
sin2α=16116\Rightarrow {{\sin }^{2}}\alpha =\dfrac{16-1}{16}
sin2α=1516\Rightarrow {{\sin }^{2}}\alpha =\dfrac{15}{16}
Taking square root on both the sides of the equation, we get
sin2α=1516\sqrt{{{\sin }^{2}}\alpha }=\sqrt{\dfrac{15}{16}}
Let us use the property ab=ab\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}} in the above expression. We get
sin2α=1516\sqrt{{{\sin }^{2}}\alpha }=\dfrac{\sqrt{15}}{\sqrt{16}}
On further simplification, we get
sin2α=1542\sqrt{{{\sin }^{2}}\alpha }=\dfrac{\sqrt{15}}{\sqrt{{{4}^{2}}}}
We know that x2=±x\sqrt{{{x}^{2}}}=\pm x. We get
sinα=±154\Rightarrow \sin \alpha =\pm \dfrac{\sqrt{15}}{4}
But we have assumed α=cos1(14)\alpha ={{\cos }^{-1}}\left( -\dfrac{1}{4} \right).
Therefore, sin(cos1(14))=±154\sin \left( {{\cos }^{-1}}\left( -\dfrac{1}{4} \right) \right)=\pm \dfrac{\sqrt{15}}{4}.

Note: We should not make calculation mistakes based on sign conventions. Be thorough with the trigonometric identities to simplify this type of problems. We should not forget to put ± without which the answer is wrong. It is advisable to first convert the given function to a simpler form and then solve.