Solveeit Logo

Question

Question: How do you simplify \[\sin {175^ \circ }\cos {55^ \circ } - \cos {175^ \circ }\sin {55^ \circ }\]?...

How do you simplify sin175cos55cos175sin55\sin {175^ \circ }\cos {55^ \circ } - \cos {175^ \circ }\sin {55^ \circ }?

Explanation

Solution

The expanded form of sin(ab)\sin \left( {a - b} \right) is sin(a)cos(b)sin(b)cos(a)\sin \left( a \right)\cos \left( b \right) - \sin \left( b \right)\cos \left( a \right)
This expression resembles the expression given in the question. Our aim is to try to fit the given expression in this standard form.

Complete step-by-step solution:
We know that,
sin(ab)=sin(a)cos(b)sin(b)cos(a)\sin \left( {a - b} \right) = \sin \left( a \right)\cos \left( b \right) - \sin \left( b \right)\cos \left( a \right)
The given expression is indeed the expanded form of the above mentioned identity.
Here,a=175a = {175^ \circ } and b=55b = {55^ \circ }
Therefore, substituting a=175a = {175^ \circ }and b=55b = {55^ \circ } in the identity sin(ab)\sin \left( {a - b} \right) we will get
sin175cos55cos175sin55\sin {175^ \circ }\cos {55^ \circ } - \cos {175^ \circ }\sin {55^ \circ }
sin(17555)\Rightarrow \sin \left( {{{175}^ \circ } - {{55}^ \circ }} \right)
sin(120)\Rightarrow \sin \left( {{{120}^ \circ }} \right)
Now, we have to find the value of sin(120)\sin \left( {{{120}^ \circ }} \right)
To find the value of sin(120)\sin \left( {{{120}^ \circ }} \right), we will try to make it in terms of some other standard values like 180{180^ \circ } ,60{60^ \circ }etc.
We know that, 120=18060120^\circ = 180^\circ - 60^\circ
Therefore, we can write sin(120)\sin \left( {{{120}^ \circ }} \right) as sin(18060)\sin \left( {{{180}^ \circ } - 60} \right)
Also,
sin(180x)=sin(x)\sin \left( {{{180}^ \circ } - x} \right) = \sin \left( x \right)
Hence, sin(18060)\sin \left( {{{180}^ \circ } - 60} \right) will become sin(60)\sin \left( {{{60}^ \circ }} \right)

Hence,sin175cos55cos175sin55\sin {175^ \circ }\cos {55^ \circ } - \cos {175^ \circ }\sin {55^ \circ } =sin(60)\sin \left( {{{60}^ \circ }} \right)

Note: Sine or the sine function is one of the three primary functions in trigonometry, the others being cosine, and tan functions. The sine x or sine theta can be defined as the ratio of the opposite side of a right triangle to its hypotenuse
Cos function (or cosine function) in a triangle is the ratio of the adjacent side to that of the hypotenuse.
Secant is the ratio between the hypotenuses to the shorter side adjacent to an acute angle in a right triangle.
Sin(A+B)=SinAcosB+CosA+SinB(A + B) = \operatorname{Sin} A\cos B + \operatorname{Cos} A + \operatorname{Sin} B
To find the value ofsin(120)\sin \left( {{{120}^ \circ }} \right), we will use the addition formula and values of these angles.
sin(120)\sin \left( {{{120}^ \circ }} \right)= sin(90+30)\sin \left( {90 + 30} \right)
Now using the formula,
sin(a+b)=sin(a)cos(b)+sin(b)cos(a)\sin \left( {a + b} \right) = \sin \left( a \right)\cos \left( b \right) + \sin \left( b \right)\cos \left( a \right)
We can write;
sin(120)=\sin \left( {{{120}^ \circ }} \right) = sin(a+b)=sin(90)cos(30)+sin(30)cos(90)\sin \left( {a + b} \right) = \sin \left( {90} \right)\cos \left( {30} \right) + \sin \left( {30} \right)\cos \left( {90} \right)
Now putting the values sin(90)\sin \left( {{{90}^ \circ }} \right), sin(30)\sin \left( {{{30}^ \circ }} \right), cos(90)\cos \left( {{{90}^ \circ }} \right)and cos(30)\cos \left( {{{30}^ \circ }} \right) from the table above, we get;
sin120=(1)(32)(0)(12)\sin 120 = \left( 1 \right)\left( {\dfrac{{\sqrt 3 }}{2}} \right) - \left( 0 \right)\left( {\dfrac{1}{2}} \right)
sin120=(32)\sin 120 = \left( {\dfrac{{\sqrt 3 }}{2}} \right)
This is the standard way of finding the numerical values of the trigonometric ratios. But it is indeed necessary to know some of the standard values before approaching these.