Solveeit Logo

Question

Question: How do you simplify \(\left( {\dfrac{{\sec x}}{{\sin x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x...

How do you simplify (secxsinx)(sinxcosx)\left( {\dfrac{{\sec x}}{{\sin x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x}}} \right) ?

Explanation

Solution

In this question, we have been asked to simplify the given trigonometric equation. Start by converting the ratios into sin and cos. Then, find out the LCM of the denominators and make them equal. Simplify the equation that you have got now. You will see an identity being formed in the numerator. Put its value and cancel out the like terms. You will get your answer.

Formula used:

  1. cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1
  2. cosxsinx=cotx\dfrac{{\cos x}}{{\sin x}} = \cot x

Complete step-by-step answer:
We are given a trigonometric expression. Let us see how to simplify it.
(secxsinx)(sinxcosx)\Rightarrow \left( {\dfrac{{\sec x}}{{\sin x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x}}} \right) …. (given)
Simplifying the numerator by putting secx=1cosx\sec x = \dfrac{1}{{\cos x}},
(1sinxcosx)(sinxcosx)\Rightarrow \left( {\dfrac{1}{{\sin x\cos x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x}}} \right)
Now, we will take LCM of the denominator. LCM will come out to be sinxcosx\sin x\cos x.
Multiplying the second term by sinx\sin x to make the denominator the same.
(1sinxcosx)(sinx×sinxcosx×sinx)\Rightarrow \left( {\dfrac{1}{{\sin x\cos x}}} \right) - \left( {\dfrac{{\sin x \times \sin x}}{{\cos x \times \sin x}}} \right)
On simplifying, we will get,
1sin2xsinxcosx\Rightarrow \dfrac{{1 - {{\sin }^2}x}}{{\sin x\cos x}}
We know that cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1. On shifting, we will get, cos2x=1sin2x{\cos ^2}x = 1 - {\sin ^2}x. Substituting this in the above expression,
cos2xsinxcosx\Rightarrow \dfrac{{{{\cos }^2}x}}{{\sin x\cos x}}
Cancelling out the like terms,
cosxsinx\Rightarrow \dfrac{{\cos x}}{{\sin x}}
We know that cosxsinx=cotx\dfrac{{\cos x}}{{\sin x}} = \cot x.

Hence, (secxsinx)(sinxcosx)=cotx\left( {\dfrac{{\sec x}}{{\sin x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x}}} \right) = \cot x

Note:
Let us solve the same question by another method.
(secxsinx)(sinxcosx)\Rightarrow \left( {\dfrac{{\sec x}}{{\sin x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x}}} \right)
We know that sinxcosx=tanx\dfrac{{\sin x}}{{\cos x}} = \tan x. Putting this in the above expression,
(secxsinx)tanx\Rightarrow \left( {\dfrac{{\sec x}}{{\sin x}}} \right) - \tan x
Now, in order to make the denominator, the same, we will multiply and divide the second term by sinx\sin x.
(secxsinx)tanx×sinxsinx\Rightarrow \left( {\dfrac{{\sec x}}{{\sin x}}} \right) - \dfrac{{\tan x \times \sin x}}{{\sin x}}
On simplifying, we will get,
secxtanx×sinxsinx\Rightarrow \dfrac{{\sec x - \tan x \times \sin x}}{{\sin x}}
Now, we know that secx=1cosx\sec x = \dfrac{1}{{\cos x}} and tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}. Putting them in the formula,
1cosxsin2xcosxsinx\Rightarrow \dfrac{{\dfrac{1}{{\cos x}} - \dfrac{{{{\sin }^2}x}}{{\cos x}}}}{{\sin x}}
1sin2xcosxsinx\Rightarrow \dfrac{{\dfrac{{1 - {{\sin }^2}x}}{{\cos x}}}}{{\sin x}}
Now, the steps are the same from here. We know that cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1. On shifting, we will get, cos2x=1sin2x{\cos ^2}x = 1 - {\sin ^2}x. Substituting this in the above expression,
cos2xcosxsinx\Rightarrow \dfrac{{\dfrac{{{{\cos }^2}x}}{{\cos x}}}}{{\sin x}}
Cancelling out the like terms,
cosx1sinx\Rightarrow \dfrac{{\dfrac{{\cos x}}{1}}}{{\sin x}}
On simplifying, we will get, cosxsinx=cotx\dfrac{{\cos x}}{{\sin x}} = \cot x.
Hence, the answer from this method is similar to the answer from the method we used above. You can use any method from these two.