Solveeit Logo

Question

Question: How do you simplify \[\left[ \dfrac{2+{{\tan }^{2}}x}{{{\sec }^{2}}x} \right]-1\]?...

How do you simplify [2+tan2xsec2x]1\left[ \dfrac{2+{{\tan }^{2}}x}{{{\sec }^{2}}x} \right]-1?

Explanation

Solution

To solve the given question, we will need some of the properties of trigonometric ratios as follows. The trigonometric identity states that, 1+tan2x=sec2x1+{{\tan }^{2}}x={{\sec }^{2}}x. We should also know the property, secx=1cosx\sec x=\dfrac{1}{\cos x}. We will use these properties to simplify the given expression.

Complete answer:
The given expression is [2+tan2xsec2x]1\left[ \dfrac{2+{{\tan }^{2}}x}{{{\sec }^{2}}x} \right]-1. The denominator of the expression has the term sec2x{{\sec }^{2}}x We know the trigonometric identity which states that, 1+tan2x=sec2x1+{{\tan }^{2}}x={{\sec }^{2}}x. Using this identity in the denominator of the given expression. It can be written as,
[2+tan2x1+tan2x]1\Rightarrow \left[ \dfrac{2+{{\tan }^{2}}x}{1+{{\tan }^{2}}x} \right]-1
The numerator of the above expression is 2+tan2x2+{{\tan }^{2}}x, we can replace 2 with the addition of 1 and 1. Doing this for the above expression we get,
[1+1+tan2x1+tan2x]1\Rightarrow \left[ \dfrac{1+1+{{\tan }^{2}}x}{1+{{\tan }^{2}}x} \right]-1
The above expression can also be written as,
[11+tan2x+1+tan2x1+tan2x]1\Rightarrow \left[ \dfrac{1}{1+{{\tan }^{2}}x}+\dfrac{1+{{\tan }^{2}}x}{1+{{\tan }^{2}}x} \right]-1
[11+tan2x+1]1\Rightarrow \left[ \dfrac{1}{1+{{\tan }^{2}}x}+1 \right]-1
11+tan2x\Rightarrow \dfrac{1}{1+{{\tan }^{2}}x}
Again, using the identity which states that 1+tan2x=sec2x1+{{\tan }^{2}}x={{\sec }^{2}}x in the denominator of the above expression, it can be written as
1sec2x\Rightarrow \dfrac{1}{{{\sec }^{2}}x}
We know the trigonometric relationship between secx\sec xand cosx\cos x as secx=1cosx\sec x=\dfrac{1}{\cos x}. This property can also be expressed as cosx=1secx\cos x=\dfrac{1}{\sec x}. Using this property in the denominator of the above expression, we get
1sec2x=cos2x\Rightarrow \dfrac{1}{{{\sec }^{2}}x}={{\cos }^{2}}x
Hence, the given expression can be written in simplified form as, cos2x{{\cos }^{2}}x.
[2+tan2xsec2x]1=cos2x\Rightarrow \left[ \dfrac{2+{{\tan }^{2}}x}{{{\sec }^{2}}x} \right]-1={{\cos }^{2}}x

Note: The trigonometric identities and the trigonometric properties should be remembered to solve these types of problems. The above problem can also be solved by applying the identity 1+tan2x=sec2x1+{{\tan }^{2}}x={{\sec }^{2}}x on the numerator. This can be done as, [2+tan2xsec2x]1\left[ \dfrac{2+{{\tan }^{2}}x}{{{\sec }^{2}}x} \right]-1
Using the property 1+tan2x=sec2x1+{{\tan }^{2}}x={{\sec }^{2}}x on the numerator of the expression we get, [1+sec2xsec2x]1\Rightarrow \left[ \dfrac{1+{{\sec }^{2}}x}{{{\sec }^{2}}x} \right]-1
The above expression can also be written as,
[1sec2x+sec2xsec2x]1\Rightarrow \left[ \dfrac{1}{{{\sec }^{2}}x}+\dfrac{{{\sec }^{2}}x}{{{\sec }^{2}}x} \right]-1
[1sec2x+1]1=1sec2x\Rightarrow \left[ \dfrac{1}{{{\sec }^{2}}x}+1 \right]-1=\dfrac{1}{{{\sec }^{2}}x}
Using the property cosx=1secx\cos x=\dfrac{1}{\sec x}, the above expression can be expressed as,
1sec2x=cos2x\Rightarrow \dfrac{1}{{{\sec }^{2}}x}={{\cos }^{2}}x
By both methods, we are getting the same answer.