Solveeit Logo

Question

Question: How do you simplify \[\dfrac{{7 + 2i}}{{4 + 5i}}?\]...

How do you simplify 7+2i4+5i?\dfrac{{7 + 2i}}{{4 + 5i}}?

Explanation

Solution

We will multiply numerator and denominator by the complement complex number of 4+5i4 + 5i and then simplify the above iteration. Finally we get the required answer.

Complete Step by Step Solution:
The given expression is 7+2i4+5i.\dfrac{{7 + 2i}}{{4 + 5i}}.
Now, we will multiply numerator and denominator by (45i)(4 - 5i).
By doing it, we get:
(7+2i)×(45i)(4+5i)×(45i)\Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{(4 + 5i) \times (4 - 5i)}}.
Now, by using the formula, we can write the denominator as following way:
(7+2i)×(45i)(4)2(5i)2\Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{{{(4)}^2} - {{(5i)}^2}}}.
Now, by doing further simplification, we get:
(7+2i)×(45i)16(25×1),  as  i2=1.\Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{16 - (25 \times - 1)}},\;as\;{i^2} = - 1.
By doing further simplification:
(7+2i)×(45i)16+25\Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{16 + 25}}
(7+2i)×(45i)41....................(1)\Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{41}}....................(1)
Now, calculate the numerator part only, we get:
(7+2i)×(45i)\Rightarrow (7 + 2i) \times (4 - 5i)
(7+2i)×4(7+2i)×5i\Rightarrow (7 + 2i) \times 4 - (7 + 2i) \times 5i.
Using multiplication, we get:
(28+8i)(35i+10i2)\Rightarrow (28 + 8i) - (35i + 10{i^2}).
Now, using algebraic calculations and putting the value of i2=1{i^2} = - 1, we get:
(28+8i)(35i10)\Rightarrow (28 + 8i) - (35i - 10)
28+8i35i10\Rightarrow 28 + 8i - 35i - 10.
Now, by doing further simplification:
(1827i)\Rightarrow (18 - 27i).
Now, putting the value of numerator of (1827i)(18 - 27i) in the iteration (1)(1), we get:
(1827i)41\Rightarrow \dfrac{{(18 - 27i)}}{{41}}.

Therefore, the required answer is (1827i)41\dfrac{{(18 - 27i)}}{{41}}.

Note: Points to remember:
A complex number is expressed as following:
X+i.YX + i.Y, where XX and YY are real numbers but the imaginary part of the number is ii.
A complex number lies on the imaginary axis in XYX - Y plane.