Solveeit Logo

Question

Question: How do you simplify \[\dfrac{4}{5} - \dfrac{1}{2}\]...

How do you simplify 4512\dfrac{4}{5} - \dfrac{1}{2}

Explanation

Solution

Here in this question, we have - symbol which represents the subtraction and we have to subtract the two numbers. The numbers are in the form of fraction. by taking the LCM for the denominators and we are going to simplify the given numbers.

Complete step-by-step solution:
A vector that has a magnitude of 1 is a unit vector. It is also known as Direction Vector.
The given points are A(3, -1, 2), B(1, -1, -3) and C(4, -3, 1) lie on the plane ABC. Therefore ABAB and ACACare the vectors which is on the plane ABC. Then AB×AC\overrightarrow {AB} \times \overrightarrow {AC} is perpendicular to the plane.
Then the unit vector is determined by using the formula AB×ACAB×AC\dfrac{{\overrightarrow {AB} \times \overrightarrow {AC} }}{{||\overrightarrow {AB} \times \overrightarrow {AC} ||}}----- (1)
The vector AB\overrightarrow {AB} is determined by the BAB - A, substituting the values of A and B we get
AB=(1,1,3)(3,1,2)\Rightarrow \overrightarrow {AB} = (1, - 1, - 3) - (3, - 1,2)

AB=(13,1(1),32) AB=(13,1+1,32)  \Rightarrow \overrightarrow {AB} = (1 - 3, - 1 - ( - 1), - 3 - 2) \\\ \Rightarrow \overrightarrow {AB} = (1 - 3, - 1 + 1, - 3 - 2) \\\

AB=(2,0,5) \Rightarrow \overrightarrow {AB} = ( - 2,0, - 5) ---------- (2)
The vector AC\overrightarrow {AC} is determined by the CAC - A, substituting the values of A and C we get
AB=(4,3,1)(3,1,2)\Rightarrow \overrightarrow {AB} = (4, - 3,1) - (3, - 1,2)

AC=(43,3(1),12) AB=(43,3+1,12)  \Rightarrow \overrightarrow {AC} = (4 - 3, - 3 - ( - 1),1 - 2) \\\ \Rightarrow \overrightarrow {AB} = (4 - 3, - 3 + 1,1 - 2) \\\

AB=(1,2,1) \Rightarrow \overrightarrow {AB} = (1, - 2, - 1) ------------ (3)
The AB×AC\overrightarrow {AB} \times \overrightarrow {AC} is a cross product. So we have

i&j;&k; \\\ { - 2}&0&{ - 5} \\\ 1&{ - 2}&{ - 1} \end{array}} \right|$$ On simplifying

\Rightarrow \overrightarrow {AB} \times \overrightarrow {AC} = i(0( - 1) - ( - 2)( - 5)) - j(( - 2)( - 1) - (1)( - 5)) \\
k(( - 2)( - 2) - (1)(0)) \\

$$ \Rightarrow \overrightarrow {AB} \times \overrightarrow {AC} = i(0 + 10) - j(2 + 5) + k(4 - 0)$$ $$ \Rightarrow \overrightarrow {AB} \times \overrightarrow {AC} = 10i - 7j + 4k = (10, - 7,4)$$---- (4) The $$\left\| {\overrightarrow {AB} \times \overrightarrow {AC} } \right\|$$ is determined by

\Rightarrow \left| {\overrightarrow {AB} \times \overrightarrow {AC} } \right| = \sqrt {{{10}^2} + {{( - 7)}^2} + {4^2}} \\
\Rightarrow \left| {\overrightarrow {AB} \times \overrightarrow {AC} } \right| = \sqrt {100 + 49 + 16} \\
\Rightarrow \left| {\overrightarrow {AB} \times \overrightarrow {AC} } \right| = \sqrt {165} \\

Therefore the unit vector is given by $$\dfrac{{\overrightarrow {AB} \times \overrightarrow {AC} }}{{||\overrightarrow {AB} \times \overrightarrow {AC} ||}} = \left( {\dfrac{{10}}{{\sqrt {165} }},\dfrac{{ - 7}}{{\sqrt {165} }},\dfrac{4}{{\sqrt {165} }}} \right)$$ Hence this is the unit vector perpendicular to the plane **Note:** The vectors are multiplied by the two kinds one is dot product and the other one is cross product. The dot product is like multiplication itself. The terms are multiplied which are in the same coordinate. But in case of cross product while multiplying the terms we consider the determinant for the points or vector.