Solveeit Logo

Question

Question: How do you simplify \(\dfrac{2-{{\sec }^{2}}x}{{{\sec }^{2}}x}\)?...

How do you simplify 2sec2xsec2x\dfrac{2-{{\sec }^{2}}x}{{{\sec }^{2}}x}?

Explanation

Solution

We first multiply cos2x{{\cos }^{2}}x to both the numerator and the denominator of the fraction 2sec2xsec2x\dfrac{2-{{\sec }^{2}}x}{{{\sec }^{2}}x}. Then we complete the multiplication and replace the value of cos2x×sec2x{{\cos }^{2}}x\times {{\sec }^{2}}x with 1 as cosx×secx=1\cos x\times \sec x=1. Then we use the theorem of multiple angles cos2x=2cos2x1\cos 2x=2{{\cos }^{2}}x-1 and find the solution of the equation 2sec2xsec2x\dfrac{2-{{\sec }^{2}}x}{{{\sec }^{2}}x} as 1.

Complete step by step answer:
We have been given to find the solution of the trigonometric function 2sec2xsec2x\dfrac{2-{{\sec }^{2}}x}{{{\sec }^{2}}x}.
We multiply both the numerator and the denominator of the fraction with cos2x{{\cos }^{2}}x.
Therefore, 2sec2xsec2x=cos2x(2sec2x)cos2x×sec2x\dfrac{2-{{\sec }^{2}}x}{{{\sec }^{2}}x}=\dfrac{{{\cos }^{2}}x\left( 2-{{\sec }^{2}}x \right)}{{{\cos }^{2}}x\times {{\sec }^{2}}x}.
We know that in trigonometric identity relation cosx\cos x is inverse of secx\sec x.
This means cosx=1secx\cos x=\dfrac{1}{\sec x} which gives cosx×secx=1\cos x\times \sec x=1.
For the exponent theorem we get that for two numbers aa and bb we have a2×b2=(ab)2{{a}^{2}}\times {{b}^{2}}={{\left( ab \right)}^{2}}.
In the multiplication of the equation cos2x(2sec2x)cos2x×sec2x\dfrac{{{\cos }^{2}}x\left( 2-{{\sec }^{2}}x \right)}{{{\cos }^{2}}x\times {{\sec }^{2}}x}, we multiply cos2x{{\cos }^{2}}x with 2 and get 2cos2x2{{\cos }^{2}}x.
Then we multiply cos2x{{\cos }^{2}}x with sec2x{{\sec }^{2}}x and get cos2x×sec2x{{\cos }^{2}}x\times {{\sec }^{2}}x. Same thing happens for denominator and we get cos2x×sec2x{{\cos }^{2}}x\times {{\sec }^{2}}x.
Therefore, in the expression cos2x(2sec2x)cos2x×sec2x=2cos2xcos2x×sec2xcos2x×sec2x\dfrac{{{\cos }^{2}}x\left( 2-{{\sec }^{2}}x \right)}{{{\cos }^{2}}x\times {{\sec }^{2}}x}=\dfrac{2{{\cos }^{2}}x-{{\cos }^{2}}x\times {{\sec }^{2}}x}{{{\cos }^{2}}x\times {{\sec }^{2}}x}, the value of cos2x×sec2x{{\cos }^{2}}x\times {{\sec }^{2}}x can be replaced as 1.
The value of cos2x×sec2x{{\cos }^{2}}x\times {{\sec }^{2}}x can be written as cos2x×sec2x=(cosx×secx)2{{\cos }^{2}}x\times {{\sec }^{2}}x={{\left( \cos x\times \sec x \right)}^{2}}. We know that cosx×secx=1\cos x\times \sec x=1 which gives cos2x×sec2x=(cosx×secx)2=1{{\cos }^{2}}x\times {{\sec }^{2}}x={{\left( \cos x\times \sec x \right)}^{2}}=1.
The simplified form of 2cos2xcos2x×sec2xcos2x×sec2x\dfrac{2{{\cos }^{2}}x-{{\cos }^{2}}x\times {{\sec }^{2}}x}{{{\cos }^{2}}x\times {{\sec }^{2}}x} is
2cos2xcos2x×sec2xcos2x×sec2x=2cos2x11=2cos2x1\dfrac{2{{\cos }^{2}}x-{{\cos }^{2}}x\times {{\sec }^{2}}x}{{{\cos }^{2}}x\times {{\sec }^{2}}x}=\dfrac{2{{\cos }^{2}}x-1}{1}=2{{\cos }^{2}}x-1.
Now we apply the theorem of multiple angles which gives us cos2x=2cos2x1\cos 2x=2{{\cos }^{2}}x-1.
We can replace the value in the equation and get 2sec2xsec2x=cos2x\dfrac{2-{{\sec }^{2}}x}{{{\sec }^{2}}x}=\cos 2x.
Therefore, the simplified form of 2sec2xsec2x\dfrac{2-{{\sec }^{2}}x}{{{\sec }^{2}}x} is cos2x\cos 2x.

Note: The denominator value sec2x{{\sec }^{2}}x in the function of 2sec2xsec2x\dfrac{2-{{\sec }^{2}}x}{{{\sec }^{2}}x} can be converted to cos2x{{\cos }^{2}}x through inverse theorem and then we can multiply it with 2sec2x2-{{\sec }^{2}}x to solve the equation. The other form of the multiple angle theorem cos2x\cos 2x is cos2x=12sin2x\cos 2x=1-2{{\sin }^{2}}x.