Solveeit Logo

Question

Question: How do you simplify \[\dfrac{{1 + \tan \left( x \right)}}{{\sec \left( x \right)}}\]?...

How do you simplify 1+tan(x)sec(x)\dfrac{{1 + \tan \left( x \right)}}{{\sec \left( x \right)}}?

Explanation

Solution

Hint : This question involves the arithmetic operations like addition/ subtraction/ multiplication/ division. We need to know the basic formula and conditions in trigonometric operations. Also, we need to know the arithmetic operations with the involvement of fraction terms. We need to know how to convert the mixed fraction terms into simple fraction terms.

Complete step-by-step answer :
The given expression is shown below,
1+tan(x)sec(x)=?(1)\dfrac{{1 + \tan \left( x \right)}}{{\sec \left( x \right)}} = ? \to \left( 1 \right)
We know that
tanx\tan xCan also be written as,
tanx=sinxcosx(2)\tan x = \dfrac{{\sin x}}{{\cos x}} \to \left( 2 \right)
And secx\sec x can also be written as,
secx=1cosx\sec x = \dfrac{1}{{\cos x}} (3) \to \left( 3 \right)
Let’s substitute the equation (2)\left( 2 \right)and (3)\left( 3 \right) in the equation (1)\left( 1 \right), we get
(1)1+tan(x)sec(x)=?\left( 1 \right) \to \dfrac{{1 + \tan \left( x \right)}}{{\sec \left( x \right)}} = ?
1+tan(x)sec(x)=(1+sinxcosx)(1cosx)(4)\dfrac{{1 + \tan \left( x \right)}}{{\sec \left( x \right)}} = \dfrac{{\left( {1 + \dfrac{{\sin x}}{{\cos x}}} \right)}}{{\left( {\dfrac{1}{{\cos x}}} \right)}} \to \left( 4 \right)
Let’s solve the numerator part,
In the numerator we have,
1+sinxcosx=?1 + \dfrac{{\sin x}}{{\cos x}} = ?
We know that,
a+bc=ac+bca + \dfrac{b}{c} = \dfrac{{ac + b}}{c}
By using this formula we can write,
1+sinxcosx=1cosx+sinxcosx=cosx+sinxcosx1 + \dfrac{{\sin x}}{{\cos x}} = \dfrac{{1 \cdot \cos x + \sin x}}{{\cos x}} = \dfrac{{\cos x + \sin x}}{{\cos x}}
By using these values in the equation (4)\left( 4 \right), we get
(4)1+tan(x)sec(x)=(1+sinxcosx)(1cosx)\left( 4 \right) \to \dfrac{{1 + \tan \left( x \right)}}{{\sec \left( x \right)}} = \dfrac{{\left( {1 + \dfrac{{\sin x}}{{\cos x}}} \right)}}{{\left( {\dfrac{1}{{\cos x}}} \right)}}
1+tan(x)sec(x)=(cosx+sinxcosx)(1cosx)\dfrac{{1 + \tan \left( x \right)}}{{\sec \left( x \right)}} = \dfrac{{\left( {\dfrac{{\cos x + \sin x}}{{\cos x}}} \right)}}{{\left( {\dfrac{1}{{\cos x}}} \right)}}
The above equation can also be written as by using the formula
(ab)(dc)=abdc\dfrac{{\left( {\dfrac{a}{b}} \right)}}{{\left( {\dfrac{d}{c}} \right)}} = \dfrac{a}{b} \cdot \dfrac{d}{c}
We get
1+tan(x)sec(x)=(cosx+sinxcosx)(1cosx)=cosx+sinxcosxcosx1\dfrac{{1 + \tan \left( x \right)}}{{\sec \left( x \right)}} = \dfrac{{\left( {\dfrac{{\cos x + \sin x}}{{\cos x}}} \right)}}{{\left( {\dfrac{1}{{\cos x}}} \right)}} = \dfrac{{\cos x + \sin x}}{{\cos x}} \cdot \dfrac{{\cos x}}{1}
By solving the above equation we get,
1+tan(x)sec(x)=cosx+sinxcosxcosx1=cosx+sinx1\dfrac{{1 + \tan \left( x \right)}}{{\sec \left( x \right)}} = \dfrac{{\cos x + \sin x}}{{\cos x}} \cdot \dfrac{{\cos x}}{1} = \dfrac{{\cos x + \sin x}}{1}
So, the final answer is,
1+tan(x)sec(x)=cosx+sinx\dfrac{{1 + \tan \left( x \right)}}{{\sec \left( x \right)}} = \cos x + \sin x
So, the correct answer is “cosx+sinx\cos x + \sin x”.

Note : Note that sinx\sin xis the inverse form of cscx\csc x. cosx\cos xis the inverse form of secx\sec x. tanx\tan xis the inverse form of cotx\cot x. Also, note that tanx\tan xcan be written as sinxcosx\dfrac{{\sin x}}{{\cos x}}. Also, remember the basic formulae and conditions in trigonometric operations to make easy calculations. Also, note that if the expression is in the form of (ab)(dc)\dfrac{{\left( {\dfrac{a}{b}} \right)}}{{\left( {\dfrac{d}{c}} \right)}}it can be written as abdc\dfrac{a}{b} \cdot \dfrac{d}{c}. Remember the basic algebraic formulae to solve these types of problems. Also, note that when we move one term from LHS to RHS or RHS to LHS, the arithmetic operations can be modified as follows,
Addition \tosubtraction
Subtraction \toaddition
Multiplication \todivision
Division \tomultiplication