Solveeit Logo

Question

Question: How do you simplify \(\dfrac{1+{{\tan }^{2}}x}{1+{{\cot }^{2}}x}\) ?...

How do you simplify 1+tan2x1+cot2x\dfrac{1+{{\tan }^{2}}x}{1+{{\cot }^{2}}x} ?

Explanation

Solution

Here in this question, we have to use trigonometric fundamental identities. We will use:
1+tan2x=sec2x\Rightarrow 1+{{\tan }^{2}}x={{\sec }^{2}}x
1+cot2x=cosec2x\Rightarrow 1+{{\cot }^{2}}x=\cos e{{c}^{2}}x
After applying these identities, we can write sec2x{{\sec }^{2}}x as 1cos2x\dfrac{1}{{{\cos }^{2}}x} and cosec2x{{\operatorname{cosec}}^{2}}xas 1sin2x\dfrac{1}{{{\sin }^{2}}x}. On dividing these two values, we will obtain the answer.

Complete step by step answer:
Let’s solve the question now.
As we are already aware of the basic functions of trigonometry. Those are:
\Rightarrow Sine (sin)
\Rightarrow Cosine (cos)
\Rightarrow Tangent (tan)
We are also aware of derived functions as well. They are:
\Rightarrow cosecθ\theta = 1sinθ\dfrac{1}{\sin \theta }
\Rightarrow secθ\theta = 1cosθ\dfrac{1}{\cos \theta }
\Rightarrow tanθ\theta = sinθcosθ\dfrac{\sin \theta }{\cos \theta } = 1cotθ\dfrac{1}{\cot \theta }
\Rightarrow cotθ\theta = 1tanθ\dfrac{1}{\tan \theta } = cosθsinθ\dfrac{\cos \theta }{\sin \theta }
We can also obtain some values by reciprocating the functions:
\Rightarrow sinx = 1cosecx\dfrac{1}{\text{cosecx}} or cosecx = 1sinx\dfrac{1}{\sin x}
\Rightarrow cosx = 1secx\dfrac{1}{\sec x} or secx = 1cosx\dfrac{1}{\cos x}
\Rightarrow tanx = 1cotx\dfrac{1}{\cot x} or cotx = 1tanx\dfrac{1}{\tan x}
Let’s see some Pythagorean identities as well:
cos2x+sin2x=1\Rightarrow {{\cos }^{2}}x+{{\sin }^{2}}x=1
1+tan2x=sec2x\Rightarrow 1+{{\tan }^{2}}x={{\sec }^{2}}x
1+cot2x=cosec2x\Rightarrow 1+{{\cot }^{2}}x=\cos e{{c}^{2}}x
You should know how to derive 1+tan2x=sec2x1+{{\tan }^{2}}x={{\sec }^{2}}x.
First, write:
1+tan2x\Rightarrow 1+{{\tan }^{2}}x
Now, replace tan2x{{\tan }^{2}}x with sin2xcos2x\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x} because tanx can be written in the form of sinxcosx\dfrac{\sin x}{\cos x}.
1+sin2xcos2x\Rightarrow 1+\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}
Now, make the denominator common:
cos2x+sin2xcos2x\Rightarrow \dfrac{{{\cos }^{2}}x+{{\sin }^{2}}x}{{{\cos }^{2}}x}
We know from formulae that cos2x+sin2x=1{{\cos }^{2}}x+{{\sin }^{2}}x=1. After replacing the value we will get:
1cos2x\Rightarrow \dfrac{1}{{{\cos }^{2}}x}
From reciprocating functions, we know that secx = 1cosx\dfrac{1}{\cos x}. So replace this also:
sec2x\Rightarrow {{\sec }^{2}}x
In similar fashion, 1+cot2x=cosec2x1+{{\cot }^{2}}x=\cos e{{c}^{2}}xcan also be obtained.
Now:
1+cot2x\Rightarrow 1+{{\cot }^{2}}x
Now, replace cot2x{{\cot }^{2}}x with cos2xsin2x\dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x} because cotx can be written in the form of cosxsinx\dfrac{\cos x}{\sin x}.
1+cos2xsin2x\Rightarrow 1+\dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x}
Now, make the denominator common:
sin2x+cos2xsin2x\Rightarrow \dfrac{{{\sin }^{2}}x+{{\cos }^{2}}x}{{{\sin }^{2}}x}
We know from formulae that cos2x+sin2x=1{{\cos }^{2}}x+{{\sin }^{2}}x=1. After replacing the value we will get:
1sin2x\Rightarrow \dfrac{1}{{{\sin }^{2}}x}
From reciprocating functions, we know that cosecx = 1sinx\dfrac{1}{\sin x}. So replace this also:
cosec2x\Rightarrow \cos e{{c}^{2}}x

Now, write the question below.
1+tan2x1+cot2x\Rightarrow \dfrac{1+{{\tan }^{2}}x}{1+{{\cot }^{2}}x}
As we know that:
1+tan2x=sec2x\Rightarrow 1+{{\tan }^{2}}x={{\sec }^{2}}x
1+cot2x=cosec2x\Rightarrow 1+{{\cot }^{2}}x=\cos e{{c}^{2}}x
So these values will be replaced with new values in the expression, we will get:
sec2xcosec2x\Rightarrow \dfrac{{{\sec }^{2}}x}{\cos e{{c}^{2}}x}
We also know that sec2x{{\sec }^{2}}x can be written as 1cos2x\dfrac{1}{{{\cos }^{2}}x} and cosec2x{{\operatorname{cosec}}^{2}}x can be written as 1sin2x\dfrac{1}{{{\sin }^{2}}x}. On replacing the values, we will get:
1cos2x1sin2x\Rightarrow \dfrac{\dfrac{1}{{{\cos }^{2}}x}}{\dfrac{1}{{{\sin }^{2}}x}}
Now, reciprocate the denominator, we will get:
sin2xcos2x\Rightarrow \dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}
As sinxcosx\dfrac{\sin x}{\cos x} forms tanx, so will convert the expression in tangent i.e. tan:

tan2x\therefore {{\tan }^{2}}x is the final answer.

Note: If you know all the basic formulae, you can be able to derive any identity very easily. Derived identities should also be learnt which will help you to solve longer questions in less time. In this question, if you don’t know the direct formula for 1+tan2x1+{{\tan }^{2}}x and 1+cot2x1+{{\cot }^{2}}x, you can change them into basic trigonometric functions like sin and cos to obtain the final answer.