Solveeit Logo

Question

Question: How do you simplify \( \dfrac{1-{{\left( \sin x \right)}^{2}}}{\sin x-\csc x} \) ?...

How do you simplify 1(sinx)2sinxcscx\dfrac{1-{{\left( \sin x \right)}^{2}}}{\sin x-\csc x} ?

Explanation

Solution

Hint : We first simplify the numerator and the denominator part of 1(sinx)2sinxcscx\dfrac{1-{{\left( \sin x \right)}^{2}}}{\sin x-\csc x} separately. We use the identities sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 . We also know that the terms sinx\sin x and cscx\csc x are inverse of each other which gives sinx×cscx=1\sin x\times \csc x=1 . For both parts we get the value of the simplification but the signs are opposite to each other. The final answer becomes 1-1 .

Complete step-by-step answer :
We have been given a trigonometrical fraction of 1(sinx)2sinxcscx\dfrac{1-{{\left( \sin x \right)}^{2}}}{\sin x-\csc x} .
We apply different theorems of identity for the numerator and the denominator of 1(sinx)2sinxcscx\dfrac{1-{{\left( \sin x \right)}^{2}}}{\sin x-\csc x} .
We simplify the numerator part to get
1(sinx)2=1sin2x1-{{\left( \sin x \right)}^{2}}=1-{{\sin }^{2}}x .
For the numerator part we have
1sin2x=cos2x1-{{\sin }^{2}}x={{\cos }^{2}}x as for any value of xx , sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 .
For the denominator part we multiply sinx\sin x to both terms of sinxcscx\sin x-\csc x .
We know that the terms sinx\sin x and cscx\csc x are inverse of each other.
So,
sinx×cscx=1\sin x\times \csc x=1 as sinx=1cscx\sin x=\dfrac{1}{\csc x} .
After the multiplication we get
sinx(sinxcscx)=sin2xsinxcscx\sin x\left( \sin x-\csc x \right)={{\sin }^{2}}x-\sin x\csc x .
We put the values to get
sinx(sinxcscx)=sin2x1\sin x\left( \sin x-\csc x \right)={{\sin }^{2}}x-1 .
We again put the identity value of
1sin2x=cos2x1-{{\sin }^{2}}x={{\cos }^{2}}x to get sinx(sinxcscx)=cos2x\sin x\left( \sin x-\csc x \right)=-{{\cos }^{2}}x .
Now we put all the values to get the expression
1(sinx)2sinxcscx\dfrac{1-{{\left( \sin x \right)}^{2}}}{\sin x-\csc x} as
1(sinx)2sinxcscx=cos2xcos2x=1×sinx\dfrac{1-{{\left( \sin x \right)}^{2}}}{\sin x-\csc x}=\dfrac{{{\cos }^{2}}x}{-{{\cos }^{2}}x}=-1\times \sin x
Therefore, the simplified solution of
1(sinx)2sinxcscx\dfrac{1-{{\left( \sin x \right)}^{2}}}{\sin x-\csc x} is sinx-\sin x .
So, the correct answer is “ sinx-\sin x”.

Note : We need to remember that the final terms are square terms. The identities sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 and sinx×cscx=1\sin x\times \csc x=1 are valid for any value of xx . The division of the fraction part only gives 1-1 as the solution.