Solveeit Logo

Question

Question: How do you simplify \[\cos {35^ \circ }\sin {55^ \circ } + \cos {55^ \circ }\sin {35^ \circ }\]?...

How do you simplify cos35sin55+cos55sin35\cos {35^ \circ }\sin {55^ \circ } + \cos {55^ \circ }\sin {35^ \circ }?

Explanation

Solution

We use the trigonometric identity of sinAcosB+cosAsinB\sin A\cos B + \cos A\sin B to simplify the given trigonometric equation. Compare the given equation with general trigonometric identity and write the value of A and B. Add the value of angles inside the bracket after obtaining the value from identity.

  • If A and B are two angles then sinAcosB+cosAsinB=sin(A+B)\sin A\cos B + \cos A\sin B = \sin (A + B)

Complete step-by-step answer:
We have to simplify the value of cos35sin55+cos55sin35\cos {35^ \circ }\sin {55^ \circ } + \cos {55^ \circ }\sin {35^ \circ }
We can shuffle the terms and write sin55cos35+cos55sin35\sin {55^ \circ }\cos {35^ \circ } + \cos {55^ \circ }\sin {35^ \circ }
Since we can see that the given equation matches with the trigonometric identity sinAcosB+cosAsinB\sin A\cos B + \cos A\sin B, then on comparing we get the value of A=55;B=35A = {55^ \circ };B = {35^ \circ }
Also, we know that sinAcosB+cosAsinB=sin(A+B)\sin A\cos B + \cos A\sin B = \sin (A + B)
Substituting the value of A and B in right hand side of the identity
sin55cos35+cos55sin35=sin(55+35)\Rightarrow \sin {55^ \circ }\cos {35^ \circ } + \cos {55^ \circ }\sin {35^ \circ } = \sin ({55^ \circ } + {35^ \circ })
Add the value of angles inside the bracket in right hand side of the equation
sin55cos35+cos55sin35=sin90\Rightarrow \sin {55^ \circ }\cos {35^ \circ } + \cos {55^ \circ }\sin {35^ \circ } = \sin {90^ \circ }
Now substitute the value of sin90=1\sin {90^ \circ } = 1 in the right hand side of the equation.
sin55cos35+cos55sin35=1\Rightarrow \sin {55^ \circ }\cos {35^ \circ } + \cos {55^ \circ }\sin {35^ \circ } = 1

\therefore The value of cos35sin55+cos55sin35\cos {35^ \circ }\sin {55^ \circ } + \cos {55^ \circ }\sin {35^ \circ }on simplification is equal to 1.

Note:
Many students make the mistake of calculating the value of cosine of the angle given and sine of the angle given using a scientific calculator and then substitute in the equation, then they multiply and add the terms. Keep in mind this is not the appropriate method as the values will be in decimal form and multiplying decimal values with decimal values will again give a long solution, students are advised to avoid this long calculation and make use of the trigonometric identity.
Also, many students who don’t remember the value of sine of angle obtained at the end can take help of the table that gives values of some common trigonometric functions at a few angles.

Angles (in degrees)0{0^ \circ }30{30^ \circ }45{45^ \circ }60{60^ \circ }90{90^ \circ }
sin012\dfrac{1}{2}12\dfrac{1}{{\sqrt 2 }}32\dfrac{{\sqrt 3 }}{2}11
cos132\dfrac{{\sqrt 3 }}{2}12\dfrac{1}{{\sqrt 2 }}12\dfrac{1}{2}0
tan013\dfrac{1}{{\sqrt 3 }}13\sqrt 3 Not defined
cosecNot defined22\sqrt 2 23\dfrac{2}{{\sqrt 3 }}1
sec123\dfrac{2}{{\sqrt 3 }}2\sqrt 2 2Not defined
cotNot defined3\sqrt 3 113\dfrac{1}{{\sqrt 3 }}0