Solveeit Logo

Question

Question: How do you simplify \(-{{216}^{\dfrac{1}{3}}}\)?...

How do you simplify 21613-{{216}^{\dfrac{1}{3}}}?

Explanation

Solution

We first explain the process of exponents and indices. We find the general form. Then we explain the different binary operations on exponents. We use the identities to find the simplified form of 21613-{{216}^{\dfrac{1}{3}}} with positive exponents.

Complete step by step solution:
We know the exponent form of the number aa with the exponent being nn can be expressed as an{{a}^{n}}. In case the value of nn becomes negative, the value of the exponent takes its inverse value.
The formula to express the form is an=1an,nR+{{a}^{-n}}=\dfrac{1}{{{a}^{n}}},n\in {{\mathbb{R}}^{+}}.
If we take two exponential expressions where the exponents are mm and nn.
Let the numbers be am{{a}^{m}} and an{{a}^{n}}. We take multiplication of these numbers.
The indices get added. So, am+n=am×an{{a}^{m+n}}={{a}^{m}}\times {{a}^{n}}.
The division works in an almost similar way. The indices get subtracted.
So,
aman=amn\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}.
We also have the identity of amn=(am)n{{a}^{mn}}={{\left( {{a}^{m}} \right)}^{n}}.
For given expression 21613-{{216}^{\dfrac{1}{3}}}, we find the value of 21613{{216}^{\dfrac{1}{3}}}.
For our given expression 21613{{216}^{\dfrac{1}{3}}}, we find the prime factorisation of 216.
2!216 2!108 2!54 3!27 3!9 3!3 1!1 \begin{aligned} & 2\left| \\!{\underline {\, 216 \,}} \right. \\\ & 2\left| \\!{\underline {\, 108 \,}} \right. \\\ & 2\left| \\!{\underline {\, 54 \,}} \right. \\\ & 3\left| \\!{\underline {\, 27 \,}} \right. \\\ & 3\left| \\!{\underline {\, 9 \,}} \right. \\\ & 3\left| \\!{\underline {\, 3 \,}} \right. \\\ & 1\left| \\!{\underline {\, 1 \,}} \right. \\\ \end{aligned}
Therefore, 216=23×33216={{2}^{3}}\times {{3}^{3}}. Taking cube root and applying amn=(am)n{{a}^{mn}}={{\left( {{a}^{m}} \right)}^{n}}, we get
21613=(23×33)13=23×13×33×13=6{{216}^{\dfrac{1}{3}}}={{\left( {{2}^{3}}\times {{3}^{3}} \right)}^{\dfrac{1}{3}}}={{2}^{3\times \dfrac{1}{3}}}\times {{3}^{3\times \dfrac{1}{3}}}=6. We can also express as
21613=(63)13=63×13=6{{216}^{\dfrac{1}{3}}}={{\left( {{6}^{3}} \right)}^{\dfrac{1}{3}}}={{6}^{3\times \dfrac{1}{3}}}=6.
So, 21613=6-{{216}^{\dfrac{1}{3}}}=-6
Therefore, the simplified form of 21613-{{216}^{\dfrac{1}{3}}} is 6-6.

Note: The addition and subtraction for exponents works for taking common terms out depending on the values of the indices.
For numbers am{{a}^{m}} and an{{a}^{n}}, we have am±an=am(1±anm){{a}^{m}}\pm {{a}^{n}}={{a}^{m}}\left( 1\pm {{a}^{n-m}} \right).the relation is independent of the values of mm and nn. We need to remember that the condition for am=anm=n{{a}^{m}}={{a}^{n}}\Rightarrow m=n is that the value of a0,±1a\ne 0,\pm 1.