Solveeit Logo

Question

Question: How do you simplify \({{2}^{\dfrac{5}{2}}}-{{2}^{\dfrac{3}{2}}}\)?...

How do you simplify 252232{{2}^{\dfrac{5}{2}}}-{{2}^{\dfrac{3}{2}}}?

Explanation

Solution

252232{{2}^{\dfrac{5}{2}}}-{{2}^{\dfrac{3}{2}}} is a difference of two fractional exponents . We can first simplify the fractional exponents and then perform the operation but it will be difficult and time – taking . So, we will use a simpler method to simplify this . In general , bp+q=bpbq{{b}^{p+q}}={{b}^{p}}\cdot {{b}^{q}}. So, we will use this to simplify 252{{2}^{\dfrac{5}{2}}} which can also be written as232+22{{2}^{\dfrac{3}{2}+\dfrac{2}{2}}} and hence by using the above equation , we get
252=232+22=232222{{2}^{\dfrac{5}{2}}}={{2}^{\dfrac{3}{2}+\dfrac{2}{2}}}={{2}^{\dfrac{3}{2}}}\cdot {{2}^{\dfrac{2}{2}}} .
We have to use this in the solution.

Complete step by step solution:
We know ,
252=232+22=232222{{2}^{\dfrac{5}{2}}}={{2}^{\dfrac{3}{2}+\dfrac{2}{2}}}={{2}^{\dfrac{3}{2}}}\cdot {{2}^{\dfrac{2}{2}}}
Therefore, 252232{{2}^{\dfrac{5}{2}}}-{{2}^{\dfrac{3}{2}}} can also be written as
232222232=232(2221){{2}^{\dfrac{3}{2}}}\cdot {{2}^{\dfrac{2}{2}}}-{{2}^{\dfrac{3}{2}}}={{2}^{\dfrac{3}{2}}}({{2}^{\dfrac{2}{2}}}-1)
=232(21)={{2}^{\dfrac{3}{2}}}(2-1) , since 222=21=2{{2}^{\dfrac{2}{2}}}={{2}^{1}}=2
=232={{2}^{\dfrac{3}{2}}}
And since ,
232=(222+12){{2}^{\dfrac{3}{2}}}=({{2}^{\dfrac{2}{2}+\dfrac{1}{2}}})
And hence it can also be written as
232=(222+12)=222212=2212{{2}^{\dfrac{3}{2}}}=({{2}^{\dfrac{2}{2}+\dfrac{1}{2}}})={{2}^{\dfrac{2}{2}}}\cdot {{2}^{\dfrac{1}{2}}}=2\cdot {{2}^{\dfrac{1}{2}}}

Therefore ,
252232=2×2{{2}^{\dfrac{5}{2}}}-{{2}^{\dfrac{3}{2}}}=2\times \sqrt{2}.

Note: There are many ways to simplify a fractional exponent . The exponent of a number says how many times to use the number in a multiplication. But fractional exponents are those which are the exponents that are in the form of fraction. For example An exponent of 1!/!2{\scriptscriptstyle 1\\!/\\!{ }_2}is actually square root , an exponent of 1/31/3 is cube root , an exponent of 1/41/4 is 4th4^{th} root and so on . It is important to have a knowledge of laws of exponents to simplify exponents and fractional exponents.