Solveeit Logo

Question

Question: How do you show that \({{\tanh }^{-1}}\left( x \right)=\dfrac{1}{2}\ln \left( \dfrac{1+x}{1-x} \righ...

How do you show that tanh1(x)=12ln(1+x1x){{\tanh }^{-1}}\left( x \right)=\dfrac{1}{2}\ln \left( \dfrac{1+x}{1-x} \right)?

Explanation

Solution

We first describe the concept of hyperbolic functions. We express the basic formula of tanhy=e2y1e2y+1\tanh y=\dfrac{{{e}^{2y}}-1}{{{e}^{2y}}+1}. We used the inverse formula and then tried to find the value of yy with respect to xx. Then using the logarithm formula we prove the given expression.

Complete step by step solution:
We use the concept of hyperbolic functions and formulas of logarithms.
We have been given the expression of tanh1(x){{\tanh }^{-1}}\left( x \right). We assume tanh1(x)=y{{\tanh }^{-1}}\left( x \right)=y.
Using the concept of inverse law, we get x=tanhyx=\tanh y.
We have the hyperbolic equation formula where tanhy=e2y1e2y+1\tanh y=\dfrac{{{e}^{2y}}-1}{{{e}^{2y}}+1}.
Therefore, the equation becomes x=tanhy=e2y1e2y+1x=\tanh y=\dfrac{{{e}^{2y}}-1}{{{e}^{2y}}+1}. We have x=e2y1e2y+1x=\dfrac{{{e}^{2y}}-1}{{{e}^{2y}}+1}.
We try to find the value of yy with respect to xx.
We apply the componendo-dividendo formula on the equation x1=e2y1e2y+1\dfrac{x}{1}=\dfrac{{{e}^{2y}}-1}{{{e}^{2y}}+1} to find
x1=e2y1e2y+1 1x=e2y+1e2y1 1+x1x=e2y+1+e2y1e2y+1e2y+1=2e2y2=e2y e2y=1+x1x \begin{aligned} & \dfrac{x}{1}=\dfrac{{{e}^{2y}}-1}{{{e}^{2y}}+1} \\\ & \Rightarrow \dfrac{1}{x}=\dfrac{{{e}^{2y}}+1}{{{e}^{2y}}-1} \\\ & \Rightarrow \dfrac{1+x}{1-x}=\dfrac{{{e}^{2y}}+1+{{e}^{2y}}-1}{{{e}^{2y}}+1-{{e}^{2y}}+1}=\dfrac{2{{e}^{2y}}}{2}={{e}^{2y}} \\\ & \Rightarrow {{e}^{2y}}=\dfrac{1+x}{1-x} \\\ \end{aligned}
We now apply the logarithm formula to find the value of yy.
We have logxa=alogx\log {{x}^{a}}=a\log x. The power value of aa goes as a multiplication with logx\log x.
In case of logarithmic numbers having powers, we have to multiply the power in front of the logarithm to get the single logarithmic function. We have lna=logea\ln a={{\log }_{e}}a.
Therefore, loge(e2y)=loge(1+x1x){{\log }_{e}}\left( {{e}^{2y}} \right)={{\log }_{e}}\left( \dfrac{1+x}{1-x} \right).
Simplifying we get
loge(e2y)=loge(1+x1x) 2ylogee=ln(1+x1x) \begin{aligned} & {{\log }_{e}}\left( {{e}^{2y}} \right)={{\log }_{e}}\left( \dfrac{1+x}{1-x} \right) \\\ & \Rightarrow 2y{{\log }_{e}}e=\ln \left( \dfrac{1+x}{1-x} \right) \\\ \end{aligned}
We have the identity formula of logxx=1{{\log }_{x}}x=1. This gives logee=1{{\log }_{e}}e=1.
The final form becomes
2y=ln(1+x1x) y=12ln(1+x1x) \begin{aligned} & 2y=\ln \left( \dfrac{1+x}{1-x} \right) \\\ & \Rightarrow y=\dfrac{1}{2}\ln \left( \dfrac{1+x}{1-x} \right) \\\ \end{aligned}
As we have tanh1(x)=y{{\tanh }^{-1}}\left( x \right)=y, we get tanh1(x)=y=12ln(1+x1x){{\tanh }^{-1}}\left( x \right)=y=\dfrac{1}{2}\ln \left( \dfrac{1+x}{1-x} \right).
Thus proved, tanh1(x)=12ln(1+x1x){{\tanh }^{-1}}\left( x \right)=\dfrac{1}{2}\ln \left( \dfrac{1+x}{1-x} \right).

Note: Hyperbolic functions are related to the natural exponential function as well the circular sine and cosine functions. They are called “hyperbolic” because the relationship between the sine and cosine functions is the same as a unit hyperbola.