Solveeit Logo

Question

Question: How do you show that \[\arctan \left( {\dfrac{1}{2}} \right) + \arctan \left( {\dfrac{1}{3}} \right)...

How do you show that arctan(12)+arctan(13)=π4\arctan \left( {\dfrac{1}{2}} \right) + \arctan \left( {\dfrac{1}{3}} \right) = \dfrac{\pi }{4} ?

Explanation

Solution

We will prove the question by recalling the fact that arctan(x)=tan1(x)\arctan \left( x \right) = {\tan ^{ - 1}}\left( x \right). We will use the addition of inverse tangent formula to calculate the value to proceed through the problem. We can make use of the fact that if tanθ=a\tan \theta = a for aRa \in R, then, the value of θ\theta lies in the interval (π2,π2)\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right).

Complete Step by Step Solution:
From the question, we know that we have to find the value of arctan(12)+arctan(13)\arctan \left( {\dfrac{1}{2}} \right) + \arctan \left( {\dfrac{1}{3}} \right).
Now, we also know that, arctan(x)=tan1(x)\arctan \left( x \right) = {\tan ^{ - 1}}\left( x \right)
So, arctan(12)+arctan(13)\arctan \left( {\dfrac{1}{2}} \right) + \arctan \left( {\dfrac{1}{3}} \right) can also be written as –
tan1(12)+tan1(13)\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{1}{2}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)
So, the question can also be written as –
tan1(12)+tan1(13)=π4{\tan ^{ - 1}}\left( {\dfrac{1}{2}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) = \dfrac{\pi }{4}
Taking left – hand side from the above equation, we get –
tan1(12)+tan1(13)\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{1}{2}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)
We have to prove the above equation to π4\dfrac{\pi }{4} . Therefore, we know that, the formula for addition of inverse of tangents is –
tan1x+tan1y=tan1(x+y1xy)(1){\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right) \cdots \left( 1 \right) , if xy<1xy < 1
tan1x+tan1y=π+tan1(x+y1xy)(2){\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \pi + {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right) \cdots \left( 2 \right) , if x>0,y>0,xy>1x > 0,y > 0,xy > 1
tan1x+tan1y=π+tan1(x+y1xy)(3){\tan ^{ - 1}}x + {\tan ^{ - 1}}y = - \pi + {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right) \cdots \left( 3 \right) , if x<0,y<0,xy>1x < 0,y < 0,xy > 1
Here, x=12x = \dfrac{1}{2} and y=13y = \dfrac{1}{3}
xy=12×13=16xy = \dfrac{1}{2} \times \dfrac{1}{3} = \dfrac{1}{6}
xy>0\therefore xy > 0 and xy<1xy < 1
Therefore, from the above we can conclude that, the values of xx and yy are greater than 0 but when multiplied with each other gives the value less than 1.
So, now, we will use the equation (1) as it is used when the value of xyxy is less than 1.
Therefore putting x=12x = \dfrac{1}{2} and y=13y = \dfrac{1}{3} in the equation (1), we get –
tan1(12)+tan1(13)=tan1(12+13112×13) tan1(12)+tan1(13)=tan1(56116)  \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{1}{2}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{2} + \dfrac{1}{3}}}{{1 - \dfrac{1}{2} \times \dfrac{1}{3}}}} \right) \\\ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{1}{2}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{5}{6}}}{{1 - \dfrac{1}{6}}}} \right) \\\
Now, solving the denominator in the right – hand side of the above equation, we get –
tan1(12)+tan1(13)=tan1(5656)\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{1}{2}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{5}{6}}}{{\dfrac{5}{6}}}} \right)
In the above equation, we have the numerator and denominator same in the right – hand side term, therefore, cancelling them, we get –
tan1(12)+tan1(13)=tan1(1)\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{1}{2}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) = {\tan ^{ - 1}}\left( 1 \right)
Now, we know that the value of tan\tan is 1 when the angle is π4\dfrac{\pi }{4} . Therefore, tan1(1)=π4{\tan ^{ - 1}}\left( 1 \right) = \dfrac{\pi }{4} , we get –
tan1(12)+tan1(13)=π4\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{1}{2}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) = \dfrac{\pi }{4}

Hence, the value of tan1(12)+tan1(13){\tan ^{ - 1}}\left( {\dfrac{1}{2}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) is equal to π4\dfrac{\pi }{4} as it was the required answer to the question.

Note:
Whenever we get these types of problems, we should first of all check whether we need the principal solution or the general solution for the question to be solved. We should only report the angle that was present in the principal range of the inverse of the tangent function.