Solveeit Logo

Question

Question: How do you show \({e^{it}} = \cos t + i\sin t\)?...

How do you show eit=cost+isint{e^{it}} = \cos t + i\sin t?

Explanation

Solution

Here, in the given question, we need to show that eit=cost+isint{e^{it}} = \cos t + i\sin t. Here, cos\cos and sin\sin are trigonometric functions, ee = the base of natural logarithm, ii = imaginary unit and tt = angle in radians. First, we will express the exponential of a real number xx, sinθ\sin \theta and cosθ\cos \theta as a sum of infinite series. As we know complex numbers are expressed as z=a+ibz = a + ib so, we will express the exponential of a complex number zz in the same way as the exponential of a real number.In this, we will substitute, z=itz = it and simplify it further to get our answer.

Complete step by step answer:
The exponential of a real number xx, written as ex{e^x}, is defined by sum of an infinite series, as follows
ex=k=0(xkk!)\Rightarrow {e^x} = \sum\nolimits_{k = 0}^\infty {\left( {\dfrac{{{x^k}}}{{k!}}} \right)}
On expansion, we get
ex=1+x+(x22!)+(x33!)+(x44!)+....\Rightarrow {e^x} = 1 + x + \left( {\dfrac{{{x^2}}}{{2!}}} \right) + \left( {\dfrac{{{x^3}}}{{3!}}} \right) + \left( {\dfrac{{{x^4}}}{{4!}}} \right) + ....

Also, cosθ\cos \theta and sinθ\sin \theta can be expressed as sum of infinite series as follows
cos(θ)=1(θ22!)+(θ44!)+....\Rightarrow \cos \left( \theta \right) = 1 - \left( {\dfrac{{{\theta ^2}}}{{2!}}} \right) + \left( {\dfrac{{{\theta ^4}}}{{4!}}} \right) + ....
sin(θ)=θ(θ33!)+(θ55!)+....\Rightarrow \sin \left( \theta \right) = \theta - \left( {\dfrac{{{\theta ^3}}}{{3!}}} \right) + \left( {\dfrac{{{\theta ^5}}}{{5!}}} \right) + ....
(These are Taylor series).
The exponential of a complex number zz is written as ez{e^z}, and is defined in the same way as the exponential of a real number
ez=k=0(zkk!)\Rightarrow {e^z} = \sum\nolimits_{k = 0}^\infty {\left( {\dfrac{{{z^k}}}{{k!}}} \right)}
On expansion, we get
ez=1+z+(z22!)+(z33!)+(z44!)+....\Rightarrow {e^z} = 1 + z + \left( {\dfrac{{{z^2}}}{{2!}}} \right) + \left( {\dfrac{{{z^3}}}{{3!}}} \right) + \left( {\dfrac{{{z^4}}}{{4!}}} \right) + ....

Let z=i.tz = i.t in the previous relation
ei.t=k=0((i.t)kk!)\Rightarrow {e^{i.t}} = \sum\nolimits_{k = 0}^\infty {\left( {\dfrac{{{{\left( {i.t} \right)}^k}}}{{k!}}} \right)}
On expansion, we get
ei.t=1+(i.t)+((i.t)22!)+((i.t)33!)+((i.t)44!)+....\Rightarrow {e^{i.t}} = 1 + \left( {i.t} \right) + \left( {\dfrac{{{{\left( {i.t} \right)}^2}}}{{2!}}} \right) + \left( {\dfrac{{{{\left( {i.t} \right)}^3}}}{{3!}}} \right) + \left( {\dfrac{{{{\left( {i.t} \right)}^4}}}{{4!}}} \right) + ....
eit=1+it+(i2t22!)+(i.i2t33!)+((i2)2t44!)+....\Rightarrow {e^{it}} = 1 + it + \left( {\dfrac{{{i^2}{t^2}}}{{2!}}} \right) + \left( {\dfrac{{i.{i^2}{t^3}}}{{3!}}} \right) + \left( {\dfrac{{{{\left( {{i^2}} \right)}^2}{t^4}}}{{4!}}} \right) + ....

As we know i2=1{i^2} = - 1. So, on substituting this value we get,
eit=1+it+(1×t22!)+(i×1×t33!)+((1)2×t44!)+....\Rightarrow {e^{it}} = 1 + it + \left( {\dfrac{{ - 1 \times {t^2}}}{{2!}}} \right) + \left( {\dfrac{{i \times - 1 \times {t^3}}}{{3!}}} \right) + \left( {\dfrac{{{{\left( { - 1} \right)}^2} \times {t^4}}}{{4!}}} \right) + ....
On simplification, we get
eit=1+it(t22!)(i×t33!)+(t44!)+....\Rightarrow {e^{it}} = 1 + it - \left( {\dfrac{{{t^2}}}{{2!}}} \right) - \left( {\dfrac{{i \times {t^3}}}{{3!}}} \right) + \left( {\dfrac{{{t^4}}}{{4!}}} \right) + ....

On separating the terms which have ii and which are without ii and taking ii as a common term, we get
eit=[1(t22!)+(t44!)+....]+i[t(t33!)+(t53!)+....]\Rightarrow {e^{it}} = \left[ {1 - \left( {\dfrac{{{t^2}}}{{2!}}} \right) + \left( {\dfrac{{{t^4}}}{{4!}}} \right) + ....} \right] + i\left[ {t - \left( {\dfrac{{{t^3}}}{{3!}}} \right) + \left( {\dfrac{{{t^5}}}{{3!}}} \right) + ....} \right]
As we know, cos(θ)=1(θ22!)+(θ44!)+....\cos \left( \theta \right) = 1 - \left( {\dfrac{{{\theta ^2}}}{{2!}}} \right) + \left( {\dfrac{{{\theta ^4}}}{{4!}}} \right) + .... and sin(θ)=θ(θ33!)+(θ55!)+....\sin \left( \theta \right) = \theta - \left( {\dfrac{{{\theta ^3}}}{{3!}}} \right) + \left( {\dfrac{{{\theta ^5}}}{{5!}}} \right) + ..... So, using this, we get
eit=cost+isint\Rightarrow {e^{it}} = \cos t + i\sin t
Thus the proof concluded.

Therefore, the identity eit=cost+isint{e^{it}} = \cos t + i\sin t is known as Euler’s formula.

Note: Remember that sine\sin e and cosine\cos ine functions are actually linear combinations of exponential functions with imaginary exponents. Also, the expression cosx+isinx\cos x + i\sin x is often referred to as cisx\operatorname{c} isx. Note that, cosx\cos x is a even function (i.e., cos(x)=+cos(x)\cos \left( { - x} \right) = + \cos \left( x \right)) and the Taylor series of cosx\cos x has only even powers and sinx\sin x is an odd function (i.e., sin(x)=sin(x)\sin \left( { - x} \right) = - \sin \left( x \right)) and the Taylor series of sinx\sin x has only odd powers. Remember that when t=πt = \pi , eπi=1{e^{\pi i}} = - 1 and when t=2πt = 2\pi , e2πi=1{e^{2\pi i}} = 1.