Solveeit Logo

Question

Question: How do you rewrite trigonometric expression \(\cos \left( {{{\sin }^{ - 1}}\left( u \right) + {{\cos...

How do you rewrite trigonometric expression cos(sin1(u)+cos1(v))\cos \left( {{{\sin }^{ - 1}}\left( u \right) + {{\cos }^{ - 1}}\left( v \right)} \right) as an algebraic expression?

Explanation

Solution

In this question we have to convert the given trigonometric expression into an algebraic expression, and can do this by first considering the inverse trigonometry functions as variables and using the trigonometry identities cosA=1sin2A\cos A = \sqrt {1 - {{\sin }^2}A} and sinA=1cos2A\sin A = \sqrt {1 - {{\cos }^2}A} we can find the cos and sin values for the respective sin and cos values, we will get the expression in cos and substituting the values in the identity cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B, we will get the required result.

Complete step-by-step answer:
Given trigonometric expression is cos(sin1(u)+cos1(v))\cos \left( {{{\sin }^{ - 1}}\left( u \right) + {{\cos }^{ - 1}}\left( v \right)} \right),
Let us considersin1u=A{\sin ^{ - 1}}u = A and one of the angles of a right triangle.
Then, set the hypotenuse of the triangle equal to 1. So, the adjacent side of A is u, using the Pythagorean formula, the opposite side is 1u2\sqrt {1 - {u^2}} . Base on this triangle,
sinA=opphyp=u1\sin A = \dfrac{{opp}}{{hyp}} = \dfrac{u}{1} andcosA=adjhyp=1u21\cos A = \dfrac{{adj}}{{hyp}} = \dfrac{{\sqrt {1 - {u^2}} }}{1},
sinA=u\sin A = uandcosA=1u2\cos A = \sqrt {1 - {u^2}} ,
Let us considercos1v=B{\cos ^{ - 1}}v = B and one of the angles of a right triangle.
Then, set the hypotenuse of the triangle equal to 1. So, the adjacent side of B is v. Using the Pythagorean formula, the opposite side is 1v2\sqrt {1 - {v^2}} . Base on this triangle,
cosB=adjhyp=v1\cos B = \dfrac{{adj}}{{hyp}} = \dfrac{v}{1} andsinA=opphyp=1v21\sin A = \dfrac{{opp}}{{hyp}} = \dfrac{{\sqrt {1 - {v^2}} }}{1},
cosB=v\cos B = v and sinB=1v2\sin B = \sqrt {1 - {v^2}} ,
Now given expression iscos(sin1(u)+cos1(v))\cos \left( {{{\sin }^{ - 1}}\left( u \right) + {{\cos }^{ - 1}}\left( v \right)} \right),
Now substituting the values we get,cos(A+B)\cos \left( {A + B} \right),
By using the formula cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B,
Now substituting the values in the formula we get, here sinA=u\sin A = u,cosA=1u2\cos A = \sqrt {1 - {u^2}} ,cosB=v\cos B = v and sinB=1v2\sin B = \sqrt {1 - {v^2}} , we get,
cos(sin1u+cos1v)=v1u2u1v2\Rightarrow \cos \left( {{{\sin }^{ - 1}}u + {{\cos }^{ - 1}}v} \right) = v \cdot \sqrt {1 - {u^2}} - u \cdot \sqrt {1 - {v^2}},

\therefore The algebraic expression when the trigonometric expression cos(sin1u+cos1v)\cos \left( {{{\sin }^{ - 1}}u + {{\cos }^{ - 1}}v} \right) is converted will be equal to v1u2u1v2v \cdot \sqrt {1 - {u^2}} - u \cdot \sqrt {1 - {v^2}} .

Note:
An algebraic expression is an expression involving numbers, parentheses, operation signs and numerals that becomes a number when numbers are substituted for the numerals. For example, 2x+52x + 5 is an expression but +,×+ , \times is not.
Trigonometric expression is an expression which includes the trigonometric functions of a variable.
For example:1sin2x1 - {\sin ^2}x.