Solveeit Logo

Question

Question: How do you rewrite \(\cos 3\theta \) in terms of only \(\cos \theta \) and \(\sin \theta \)?...

How do you rewrite cos3θ\cos 3\theta in terms of only cosθ\cos \theta and sinθ\sin \theta ?

Explanation

Solution

Hint : We first try to use the associative formula of cos(x+y)=cosxcosysinxsiny\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y for cos3θ\cos 3\theta . We convert all the ratios to cos form by using cos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1 and sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta . Change of identity formula of sin2θ=1cos2θ{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta gives the solution.

Complete step-by-step answer :
We know the multiple angle formula of cos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1 and sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta .
We now break the given cos3θ\cos 3\theta as cos(2θ+θ)\cos \left( 2\theta +\theta \right).
We now use the associative angle formula of cos(x+y)=cosxcosysinxsiny\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y.
Placing the values x=2θ,y=θx=2\theta ,y=\theta we get
cos(2θ+θ) =cos(2θ)cosθsin(2θ)sinθ \begin{aligned} & \cos \left( 2\theta +\theta \right) \\\ & =\cos \left( 2\theta \right)\cos \theta -\sin \left( 2\theta \right)\sin \theta \\\ \end{aligned}
Now we replace the values and get
cos(2θ+θ) =(2cos2θ1)cosθ(2sinθcosθ)sinθ =2cos3θcosθ2sin2θcosθ \begin{aligned} & \cos \left( 2\theta +\theta \right) \\\ & =\left( 2{{\cos }^{2}}\theta -1 \right)\cos \theta -\left( 2\sin \theta \cos \theta \right)\sin \theta \\\ & =2{{\cos }^{3}}\theta -\cos \theta -2{{\sin }^{2}}\theta \cos \theta \\\ \end{aligned}
Now we try to convert the ratio sin into ratio of cos. We use sin2θ=1cos2θ{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta .
Therefore,
cos(2θ+θ) =2cos3θcosθ2sin2θcosθ =2cos3θcosθ2(1cos2θ)cosθ =2cos3θcosθ2cosθ+2cos3θ =4cos3θ3cosθ \begin{aligned} & \cos \left( 2\theta +\theta \right) \\\ & =2{{\cos }^{3}}\theta -\cos \theta -2{{\sin }^{2}}\theta \cos \theta \\\ & =2{{\cos }^{3}}\theta -\cos \theta -2\left( 1-{{\cos }^{2}}\theta \right)\cos \theta \\\ & =2{{\cos }^{3}}\theta -\cos \theta -2\cos \theta +2{{\cos }^{3}}\theta \\\ & =4{{\cos }^{3}}\theta -3\cos \theta \\\ \end{aligned}
Therefore, expressing cos3θ\cos 3\theta in terms of only cosθ\cos \theta , we get cos3θ=4cos3θ3cosθ\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta .
Now we try to convert them into ratio sin.
cos3θ =cosθ(4cos2θ3) =cosθ(44sin2θ3) =cosθ(14sin2θ) \begin{aligned} & \cos 3\theta \\\ & =\cos \theta \left( 4{{\cos }^{2}}\theta -3 \right) \\\ & =\cos \theta \left( 4-4{{\sin }^{2}}\theta -3 \right) \\\ & =\cos \theta \left( 1-4{{\sin }^{2}}\theta \right) \\\ \end{aligned}
So, the correct answer is “cosθ(14sin2θ)\cos \theta \left( 1-4{{\sin }^{2}}\theta \right)”.

Note : We cannot convert the whole expression into expression of sinθ\sin \theta as that brings the root form of cosθ=±1sin2θ\cos \theta =\pm \sqrt{1-{{\sin }^{2}}\theta }. This form is not a proper expression to get the exact value we need to know about the position of the angle to find the sign.