Solveeit Logo

Question

Question: How do you prove the identity \( \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} = \tan x + \se...

How do you prove the identity tanx+secx1tanxsecx+1=tanx+secx\dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} = \tan x + \sec x ?

Explanation

Solution

Hint : In order to prove tanx+secx1tanxsecx+1=tanx+secx\dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} = \tan x + \sec x , we will multiply both the numerator and denominator with tanx+secx+1\tan x + \sec x + 1 . Then, simplify it and use trigonometric identity sec2x=tan2x+1{\sec ^2}x = {\tan ^2}x + 1 . And, evaluating it we will get the RHS.

Complete step-by-step answer :
Now, let us consider the LHS of the equation,
=tanx+secx1tanxsecx+1= \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}}
Let us multiply both the numerator and denominator with tanx+secx+1\tan x + \sec x + 1 ,
=tanx+secx1tanxsecx+1×tanx+secx+1tanx+secx+1= \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} \times \dfrac{{\tan x + \sec x + 1}}{{\tan x + \sec x + 1}}
=tan2x+tanxsecx+tanx+secxtanx+sec2x+secxtanxsecx1tan2x+tanxsecx+tanxsecxtanxsec2xsecx+tanx+secx+1= \dfrac{{{{\tan }^2}x + \tan x\sec x + \tan x + \sec x\tan x + {{\sec }^2}x + \sec x - \tan x - \sec x - 1}}{{{{\tan }^2}x + \tan x\sec x + \tan x - \sec x\tan x - {{\sec }^2}x - \sec x + \tan x + \sec x + 1}}
By cancelling and simplifying, we have,
=tan2x+2tanxsecx+sec2x1tan2xsec2x+2tanx+1= \dfrac{{{{\tan }^2}x + 2\tan x\sec x + {{\sec }^2}x - 1}}{{{{\tan }^2}x - {{\sec }^2}x + 2\tan x + 1}}
We know from trigonometric identities, sec2x=tan2x+1{\sec ^2}x = {\tan ^2}x + 1 .
By substituting we have,
=tan2x+2tanxsecx+tan2x+11tan2xtan2x1+2tanx+1= \dfrac{{{{\tan }^2}x + 2\tan x\sec x + {{\tan }^2}x + 1 - 1}}{{{{\tan }^2}x - {{\tan }^2}x - 1 + 2\tan x + 1}}
=2tan2x+2tanxsecx2tanx= \dfrac{{2{{\tan }^2}x + 2\tan x\sec x}}{{2\tan x}}
Take tanx\tan x common out from the numerator.
=2tanx(tanx+secx)2tanx= \dfrac{{2\tan x\left( {\tan x + \sec x} \right)}}{{2\tan x}}
Now, cancel 2tanx2\tan x as it is common on both numerator and denominator, we have,
=tanx+secx= \tan x + \sec x
Therefore, LHS=RHS
Hence, tanx+secx1tanxsecx+1=tanx+secx\dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} = \tan x + \sec x .
So, the correct answer is “ tanx+secx\tan x + \sec x ”.

Note : Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles