Question
Question: How do you prove the identity \( \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} = \tan x + \se...
How do you prove the identity tanx−secx+1tanx+secx−1=tanx+secx ?
Solution
Hint : In order to prove tanx−secx+1tanx+secx−1=tanx+secx , we will multiply both the numerator and denominator with tanx+secx+1 . Then, simplify it and use trigonometric identity sec2x=tan2x+1 . And, evaluating it we will get the RHS.
Complete step-by-step answer :
Now, let us consider the LHS of the equation,
=tanx−secx+1tanx+secx−1
Let us multiply both the numerator and denominator with tanx+secx+1 ,
=tanx−secx+1tanx+secx−1×tanx+secx+1tanx+secx+1
=tan2x+tanxsecx+tanx−secxtanx−sec2x−secx+tanx+secx+1tan2x+tanxsecx+tanx+secxtanx+sec2x+secx−tanx−secx−1
By cancelling and simplifying, we have,
=tan2x−sec2x+2tanx+1tan2x+2tanxsecx+sec2x−1
We know from trigonometric identities, sec2x=tan2x+1 .
By substituting we have,
=tan2x−tan2x−1+2tanx+1tan2x+2tanxsecx+tan2x+1−1
=2tanx2tan2x+2tanxsecx
Take tanx common out from the numerator.
=2tanx2tanx(tanx+secx)
Now, cancel 2tanx as it is common on both numerator and denominator, we have,
=tanx+secx
Therefore, LHS=RHS
Hence, tanx−secx+1tanx+secx−1=tanx+secx .
So, the correct answer is “ tanx+secx ”.
Note : Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles