Solveeit Logo

Question

Question: How do you prove the formula \(\operatorname{sin}3A=3sinA-4{{\sin }^{3}}A\) using only the identity ...

How do you prove the formula sin3A=3sinA4sin3A\operatorname{sin}3A=3sinA-4{{\sin }^{3}}A using only the identity sin(A+B)=sinAcosB+cosAsinB\sin (A+B)=\sin A\cos B+\cos A\sin B

Explanation

Solution

We are asked to prove that sin3A=3sinA4sin3A\operatorname{sin}3A=3sinA-4{{\sin }^{3}}A. To do so we will start considering the left hand side. We use sin(A+B)=sinAcosB+cosAsinB\sin (A+B)=\sin A\cos B+\cos A\sin B. We first split 3A as (A+2A)3A \text{ as } (A+2A) and use A=AA=A and B=2AB=2A on sin(A+B)\sin (A+B), we will split, then we will split 2A2A or A+AA+A, we will also use other splitting of sin function to obtain the different identity we will be needing during the solution.

Complete step by step solution:
We are given sin3A=3sinA4sin3A\operatorname{sin}3A=3sinA-4{{\sin }^{3}}A we have to prove the above defined identity. We start our process by considering the left side, we will process it and reach to the right. Now we have sin3A\operatorname{sin}3A. To solve our problem, we can use only one identity.
We start our process by considering the left side, we will process it and reach to the right. Now we have sin3A\sin 3Ato solve our problem we can use only one identity sin(A+B)=sinAcosB+cosAsinB\sin (A+B)=\sin A\cos B+\cos A\sin B
So to solve our problem, we rearrange terms to get more identity which can be used to solve our problem.
We have sin(3A)\sin (3A)
As we are given, sin(A+B)=sinAcosB+cosAsinB\sin (A+B)=\sin A\cos B+\cos A\sin B
Changing BB to B-B, we get,
sin(AB)=sinAcos(B)+cosA(sin(B))........(i)\sin (A-B)=\sin A\cos (-B)+\cos A(\sin (-B))........(i)
As, cos(θ)=cosθandsin(θ)=sinθ\cos (-\theta )=\cos \theta \,\,and\,\,\,\sin (-\theta )=-\sin \theta , so we have
sin(AB)=sinAcosBcosAsinB.......(ii)\sin (A-B)=\sin A\cos B - \cos A\sin B.......(ii)
Adding (ii) and (i) we get,
sin(A+B)+sin(AB)=2sinAcosB...........(iii)\sin (A+B)+\sin (A-B)=2\sin A\cos B...........(iii)
Now we have 3A3A so we split as 3A=A+2A3A=A+2A.
So, considering A=AA=A and B=2AB=2A in equation (iii) we get,
sin(A+2A)+sin(A2A)=2sin(A)(cos(2A))\sin (A+2A)+\sin (A-2A)=2\sin (A)(\cos (2A))
Simplifying we get,
sin3AsinA=2sinAcos2A\sin 3A-\sin A=2\sin A\cos 2A
Adding sinA\sin A both sides, we get,
sin3A=2sinAcos2A+sinA.........(iv)\sin 3A=2\sin A\cos 2A+\sin A.........(iv)
Now we put A=AA=A and B=90AB=90-A in eq (iii), we will get,
sin(A+90A)+sin(A(90A)=2sinAcos(90A)\sin (A+90-A)+\sin (A-(90-A)=2\sin A\cos (90-A)
Simplifying we get,
sin(90)+sin(2A90)=2sinAcos(90A)\sin (90)+\sin (2A-90)=2\sin A\cos (90-A)
As cos(90θ)=sinθandsin(θ)=sinθ\cos (90-\theta )=\sin \theta \,\,\,and\,\,\sin (-\theta )=\sin \theta , we get,
sin(2A90)=sin(902A) cos(90A)=sinA \begin{aligned} & \sin (2A-90)=-\sin (90-2A) \\\ & \cos (90-A)=\sin A \\\ \end{aligned}
So our equation is,
sin90sin(902A)=2sin2A\sin 90-\sin (90-2A)=2{{\sin }^{2}}A
Again as sin(90θ)=cosθ\sin (90-\theta )=\cos \theta , so we have sin(902A)=cos2A\sin (90-2A)=\cos 2A
So our equation becomes
sin(90)cos(2A)=2sin2A 1cos2A=2sin2A \begin{aligned} & \sin (90{}^\circ )-\cos (2A)=2{{\sin }^{2}}A \\\ & \Rightarrow 1-\cos 2A=2{{\sin }^{2}}A \\\ \end{aligned}
So, we get
cos2A=12sin2A........(iv)\cos 2A=1-2{{\sin }^{2}}A........(iv)
Using this in equation (iv) we get
sin3A=2sinA(12sin2A)+sinA\sin 3A=2\sin A(1-2{{\sin }^{2}}A)+\sin A
Opening brackets, we get
2sinA4sin3A+sinA\Rightarrow 2\sin A-4{{\sin }^{3}}A+\sin A
Adding like terms we get,
=3sinA4sin3A=3\sin A-4{{\sin }^{3}}A
So, we get
sin(3A)=3sinA4sin3A\sin (3A)=3\sin A-4{{\sin }^{3}}A
Hence proved.

Note: To start solving identity we should know in which quadrant, when ratio is positive or negative, which point ratio changes their behaviour, we must know which ratio is odd and which is even. cosx\cos x is an even relation while the sinx\sin x is an odd fraction, sin,cos\sin ,\cos change to one another at an odd multiple of 9090{}^\circ .