Solveeit Logo

Question

Question: How do you prove that the limit of \[\left( {\dfrac{{9 - 4{x^2}}}{{3 + 2x}}} \right) = 6\;\] as \(x\...

How do you prove that the limit of (94x23+2x)=6  \left( {\dfrac{{9 - 4{x^2}}}{{3 + 2x}}} \right) = 6\; as xx approaches -1.5 using the epsilon delta proof?

Explanation

Solution

Epsilon data proof:
In calculus, the εδ\varepsilon - \delta definition of a limit is an algebraically precise formulation of evaluating the limit of a function. The definition states that a limit LL of a function at a point x0{x_0} exists if no matter how x0{x_0} ​ is approached, the values returned by the function will always approach LL.
Such that it can be written mathematically as:
Let f(x)f\left( x \right) be a function defined on an open interval around x0{x_0}. Such that we can say that the limit of f(x)f\left( x \right) as xx approaches x0{x_0}isLL.
limxx0f(x)=L\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L
Now for every ε>0\varepsilon > 0 there exists δ>0\delta > 0 such that for all xx.
0<xx0<δf(x)L<ε0 < \left| {x - {x_0}} \right| < \delta \Rightarrow \left| {f\left( x \right) - L} \right| < \varepsilon
By using the above definitions and formulas we can solve the given question.

Complete step by step solution:
Given
The limit of (94x23+2x)=6      as x approaches 1.5.......................(i)\left( {\dfrac{{9 - 4{x^2}}}{{3 + 2x}}} \right) = 6\;\;{\text{\;as }}x{\text{ approaches }} - 1.5.......................\left( i \right)
So we need to prove the given statement using the epsilon delta proof.
For that we know that:
Now for every ε>0\varepsilon > 0 there exists δ>0\delta > 0 such that for all xx.
0<xx0<δf(x)L<ε0 < \left| {x - {x_0}} \right| < \delta \Rightarrow \left| {f\left( x \right) - L} \right| < \varepsilon
Herex0=1.5{x_0} = - 1.5, so we can write:
0<x+1.5<δ  (94x23+2x)6  <ε.......................(ii)0 < \left| {x + 1.5} \right| < \delta \;\mid \Rightarrow \left| {\left( {\dfrac{{9 - 4{x^2}}}{{3 + 2x}}} \right) - 6\;} \right| < \varepsilon .......................\left( {ii} \right)
Now in order to find the limit we need to manipulate the term (94x23+2x)6  <ε\left| {\left( {\dfrac{{9 - 4{x^2}}}{{3 + 2x}}} \right) - 6\;} \right| < \varepsilon to find the value ofx+1.5<\left| {x + 1.5} \right| < :
So we can write:
94x23+2x6=(32x)(3+2x)3+2x6 =(32x)6 =2x3.........................(iii)  \left| {\dfrac{{9 - 4{x^2}}}{{3 + 2x}} - 6} \right| = \left| {\dfrac{{\left( {3 - 2x} \right)\left( {3 + 2x} \right)}}{{3 + 2x}} - 6} \right| \\\ = \left| {\left( {3 - 2x} \right) - 6} \right| \\\ = \left| { - 2x - 3} \right|.........................\left( {iii} \right) \\\
Now we havex+1.5<δ\left| {x + 1.5} \right| < \delta :
Such that:

x+1.5=x(32) =2x+(32) =2x(32)  \left| {x + 1.5} \right| = \left| {x - \left( { - \dfrac{3}{2}} \right)} \right| \\\ = \left| { - 2} \right|\left| {x + \left( {\dfrac{3}{2}} \right)} \right| \\\ = 2\left| {x - \left( { - \dfrac{3}{2}} \right)} \right| \\\

Now In order to make this less than ε\varepsilon , we have to makex+(1.5)    less than ε2\left| {x + \left( {1.5} \right)} \right|\;\;{\text{less than }}\dfrac{\varepsilon }{2} .
Now from (ii) we can write:
For every ε>0\varepsilon > 0 there exists δ>0\delta > 0 such that for allxx.
0<x+1.5<δ  (94x23+2x)6  <ε0 < \left| {x + 1.5} \right| < \delta \;\mid \Rightarrow \left| {\left( {\dfrac{{9 - 4{x^2}}}{{3 + 2x}}} \right) - 6\;} \right| < \varepsilon
Also we have got
0<x+1.5<δ  =x(32)<δ0 < \left| {x + 1.5} \right| < \delta \; = \left| {x - \left( { - \dfrac{3}{2}} \right)} \right| < \delta
Such that we can write:

94x23+2x6=(32x)(3+2x)3+2x6 =(32x)6 =2x3 =2x(32) <2δ =2(ε2) =ε.....................................(iv)  \left| {\dfrac{{9 - 4{x^2}}}{{3 + 2x}} - 6} \right| = \left| {\dfrac{{\left( {3 - 2x} \right)\left( {3 + 2x} \right)}}{{3 + 2x}} - 6} \right| \\\ = \left| {\left( {3 - 2x} \right) - 6} \right| \\\ = \left| { - 2x - 3} \right| \\\ = \left| { - 2} \right|\left| {x - \left( { - \dfrac{3}{2}} \right)} \right| \\\ < 2\delta \\\ = 2\left( {\dfrac{\varepsilon }{2}} \right) \\\ = \varepsilon .....................................\left( {iv} \right) \\\

We have shown that for any positive ε\varepsilon , there is a positive δ\delta such that for all xx , if:
0<x+1.5<δ  (94x23+2x)6  <ε0 < \left| {x + 1.5} \right| < \delta \;\mid \Rightarrow \left| {\left( {\dfrac{{9 - 4{x^2}}}{{3 + 2x}}} \right) - 6\;} \right| < \varepsilon
Thereby using the basic definition of limit limx1.5(94x23+2x)=6\mathop {\lim }\limits_{x \to - 1.5} \left( {\dfrac{{9 - 4{x^2}}}{{3 + 2x}}} \right) = 6
Hence proved the limit of (94x23+2x)=6  \left( {\dfrac{{9 - 4{x^2}}}{{3 + 2x}}} \right) = 6\; as xx approaches -1.5 using the epsilon delta proof.

Note:
Also while approaching a question involving proofs one should keep in mind that one should work with one side at a time and manipulate it to the other side. The most straightforward way to do this is to simplify one side to the other directly, but we can also transform both sides to a common expression if we see no direct way to connect the two.