Solveeit Logo

Question

Question: How do you prove that \(\dfrac{d}{dx}\left( \coth x \right)=-{{\operatorname{csch}}^{2}}x\) using th...

How do you prove that ddx(cothx)=csch2x\dfrac{d}{dx}\left( \coth x \right)=-{{\operatorname{csch}}^{2}}x using the definition of cothx=coshxsinhx\coth x=\dfrac{\cosh x}{\sinh x}?

Explanation

Solution

We use the differentiation of the hyperbolic functions. We use the formulas where ddx(coshx)=sinhx,ddx(sinhx)=coshx\dfrac{d}{dx}\left( \cosh x \right)=\sinh x,\dfrac{d}{dx}\left( \sinh x \right)=\cosh x. We also use the identity formula of cosh2xsinh2x=1{{\cosh }^{2}}x-{{\sinh }^{2}}x=1. Then we use the quotient formula of differentiation to find ddx(cothx)=csch2x\dfrac{d}{dx}\left( \coth x \right)=-{{\operatorname{csch}}^{2}}x where cothx=coshxsinhx\coth x=\dfrac{\cosh x}{\sinh x}.

Complete step by step solution:
The given differentiation is the hyperbolic version of normal differentiation.
The basic differentiations follow same differentiation rules where ddx(coshx)=sinhx\dfrac{d}{dx}\left( \cosh x \right)=\sinh x, ddx(sinhx)=coshx\dfrac{d}{dx}\left( \sinh x \right)=\cosh x. It is also given that cothx=coshxsinhx\coth x=\dfrac{\cosh x}{\sinh x}.
The normal trigonometric equation of sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 changes in hyperbolic function as
cosh2xsinh2x=1{{\cosh }^{2}}x-{{\sinh }^{2}}x=1.
To prove the relation of ddx(cothx)=csch2x\dfrac{d}{dx}\left( \coth x \right)=-{{\operatorname{csch}}^{2}}x, we will use the quotient rule of differentiation where ddx(uv)=vddx(u)uddx(v)v2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}\left( u \right)-u\dfrac{d}{dx}\left( v \right)}{{{v}^{2}}}. Here u,vu,v both are functions of x.
Now for the quotient formula we assume u=coshx,v=sinhxu=\cosh x,v=\sinh x.
Putting the values, we get
ddx(coshxsinhx)=sinhxddx(coshx)coshxddx(sinhx)(sinhx)2\dfrac{d}{dx}\left( \dfrac{\cosh x}{\sinh x} \right)=\dfrac{\sinh x\dfrac{d}{dx}\left( \cosh x \right)-\cosh x\dfrac{d}{dx}\left( \sinh x \right)}{{{\left( \sinh x \right)}^{2}}}.
We now put the differentiated values and get
ddx(coshxsinhx)=sinhxddx(coshx)coshxddx(sinhx)(sinhx)2 ddx(cothx)=sinhx(sinhx)coshx(coshx)(sinhx)2 \begin{aligned} & \dfrac{d}{dx}\left( \dfrac{\cosh x}{\sinh x} \right)=\dfrac{\sinh x\dfrac{d}{dx}\left( \cosh x \right)-\cosh x\dfrac{d}{dx}\left( \sinh x \right)}{{{\left( \sinh x \right)}^{2}}} \\\ & \Rightarrow \dfrac{d}{dx}\left( \coth x \right)=\dfrac{\sinh x\left( \sinh x \right)-\cosh x\left( \cosh x \right)}{{{\left( \sinh x \right)}^{2}}} \\\ \end{aligned}
We complete the multiplication in the numerator and get
ddx(cothx)=sinh2xcosh2x(sinhx)2=cosh2xsinh2xsinh2x\dfrac{d}{dx}\left( \coth x \right)=\dfrac{{{\sinh }^{2}}x-{{\cosh }^{2}}x}{{{\left( \sinh x \right)}^{2}}}=-\dfrac{{{\cosh }^{2}}x-{{\sinh }^{2}}x}{{{\sinh }^{2}}x}.
Now again we put the values cosh2xsinh2x=1{{\cosh }^{2}}x-{{\sinh }^{2}}x=1 to get
ddx(cothx)=cosh2xsinh2xsinh2x=1sinh2x=csch2x\dfrac{d}{dx}\left( \coth x \right)=-\dfrac{{{\cosh }^{2}}x-{{\sinh }^{2}}x}{{{\sinh }^{2}}x}=-\dfrac{1}{{{\sinh }^{2}}x}=-{{\operatorname{csch}}^{2}}x.
Thus, we proved that ddx(cothx)=csch2x\dfrac{d}{dx}\left( \coth x \right)=-{{\operatorname{csch}}^{2}}x using the definition of cothx=coshxsinhx\coth x=\dfrac{\cosh x}{\sinh x}.

Note: Hyperbolic functions are related to the natural exponential function as well the circular sine and cosine functions. They are called “hyperbolic” because the relationship between the sine and cosine functions is the same as a unit hyperbola.