Solveeit Logo

Question

Question: How do you prove that \[ - \cot 2x = \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}\]?...

How do you prove that cot2x=tan2x12tanx - \cot 2x = \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}?

Explanation

Solution

We directly use the formula of tan2x\tan 2x after we convert the cotangent function in left hand side of the equation to tangent function using the formula cotx=1tanx\cot x = \dfrac{1}{{\tan x}}. Substitute the value of tan2x\tan 2x in the denominator and multiply negative sign wherever required.

  • tan2x=2tanx1tan2x\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}

Complete step-by-step solution:
We have to prove that cot2x=tan2x12tanx - \cot 2x = \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}
We take left hand side of the equation and convert the cotangent function into tangent function
Left hand side of the equation is cot2x - \cot 2x
We use the conversion of cotx=1tanx\cot x = \dfrac{1}{{\tan x}} to write the left hand side of the equation in terms of tangent
cot2x=1tan2x\Rightarrow - \cot 2x = \dfrac{{ - 1}}{{\tan 2x}}
Now we know the formula for tan2x=1tan2x2tanx\tan 2x = \dfrac{{1 - {{\tan }^2}x}}{{2\tan x}}
cot2x=(1tan2x)2tanx\Rightarrow - \cot 2x = \dfrac{{ - (1 - {{\tan }^2}x)}}{{2\tan x}}
Multiply negative sign outside the bracket with terms inside the bracket
cot2x=1(tan2x)2tanx\Rightarrow - \cot 2x = \dfrac{{ - 1 - ( - {{\tan }^2}x)}}{{2\tan x}}
Use the concept that when a negative number is multiplied by a negative number, we get the result as a positive number.
cot2x=tan2x12tanx\Rightarrow - \cot 2x = \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}
Since the term on right hand side of the equation is same as right hand side of the equation, we can write LHS == RHS
Hence Proved

Note: Alternate method:
We can convert the terms given on the right hand side of the equation in terms of sine and cosine using the formula tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}. Later use the formula cos2xsin2x=cos2x{\cos ^2}x - {\sin ^2}x = \cos 2x and 2sinxcos=sin2x2\sin x\cos = \sin 2x to convert the angle from x to 2x.
Right hand side of the equation is tan2x12tanx\dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}
Substitute the value of tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} in both numerator and denominator of the equation on right hand side
tan2x12tanx=sin2xcos2x12sinxcosx\Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - 1}}{{\dfrac{{2\sin x}}{{\cos x}}}}
Take LCM of the terms in numerator of the equation
tan2x12tanx=sin2xcos2xcos2x2sinxcosx\Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{\dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{{{\cos }^2}x}}}}{{\dfrac{{2\sin x}}{{\cos x}}}}
Write the fraction in simpler form
tan2x12tanx=sin2xcos2xcos2x×cosx2sinx\Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{{{\cos }^2}x}} \times \dfrac{{\cos x}}{{2\sin x}}
Cancel same factors from numerator and denominator of the fraction
tan2x12tanx=sin2xcos2xcosx×12sinx\Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{\cos x}} \times \dfrac{1}{{2\sin x}}
Now we can write the product of two fractions as one fraction
tan2x12tanx=sin2xcos2x2sinxcosx\Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{2\sin x\cos x}}
Take -1 common from numerator of the fraction
tan2x12tanx=(cos2xsin2x)2sinxcosx\Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{ - ({{\cos }^2}x - {{\sin }^2}x)}}{{2\sin x\cos x}}
Now we know that cos2xsin2x=cos2x{\cos ^2}x - {\sin ^2}x = \cos 2x and 2sinxcos=sin2x2\sin x\cos = \sin 2x.
Substitute the value of cos2xsin2x=cos2x{\cos ^2}x - {\sin ^2}x = \cos 2x in numerator of the fraction and 2sinxcos=sin2x2\sin x\cos = \sin 2x in the denominator of the fraction.
tan2x12tanx=cos2xsin2x\Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{ - \cos 2x}}{{\sin 2x}}
We know that cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}} then changing the angle from x to 2x we can write cot2x=cos2xsin2x\cot 2x = \dfrac{{\cos 2x}}{{\sin 2x}}
tan2x12tanx=cot2x\Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = - \cot 2x
Since the term on right hand side of the equation is same as left hand side of the equation, we can write LHS == RHS
Hence Proved