Solveeit Logo

Question

Question: How do you prove \(\tan \left( x \right)\sin \left( x \right)+\cos \left( x \right)=\sec \left( x \r...

How do you prove tan(x)sin(x)+cos(x)=sec(x)\tan \left( x \right)\sin \left( x \right)+\cos \left( x \right)=\sec \left( x \right).

Explanation

Solution

The above given question is of trigonometric identities. So, we will use the fundamental trigonometric formulas such as tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}, secx=1cosx\sec x=\dfrac{1}{\cos x} and we will also use the identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1, to prove the above expression.

Complete step-by-step solution:
We can see that above given question is of trigonometric identity and so we will use trigonometric formulas to prove the above result tan(x)sin(x)+cos(x)=sec(x)\tan \left( x \right)\sin \left( x \right)+\cos \left( x \right)=\sec \left( x \right).
Since, we have to prove that tan(x)sin(x)+cos(x)=sec(x)\tan \left( x \right)\sin \left( x \right)+\cos \left( x \right)=\sec \left( x \right).
We will make the LHS term equal to the RHS.
From LHS of the equation we know that LHS = tan(x)sin(x)+cos(x)\tan \left( x \right)\sin \left( x \right)+\cos \left( x \right)
Since, we know that tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} . So, we will put sinxcosx\dfrac{\sin x}{\cos x} in place of tanx\tan x.
LHS=tan(x)sin(x)+cos(x)=sinxcosx×sinx+cosx\Rightarrow LHS=\tan \left( x \right)\sin \left( x \right)+\cos \left( x \right)=\dfrac{\sin x}{\cos x}\times \sin x+\cos x
Now, we will take cos x as LCM then we will get:
tan(x)sin(x)+cos(x)=sinx×sinx+cosx×cosxcosx\Rightarrow \tan \left( x \right)\sin \left( x \right)+\cos \left( x \right)=\dfrac{\sin x\times \sin x+\cos x\times \cos x}{\cos x}
tan(x)sin(x)+cos(x)=sin2x+cos2xcosx\Rightarrow \tan \left( x \right)\sin \left( x \right)+\cos \left( x \right)=\dfrac{{{\sin }^{2}}x+{{\cos }^{2}}x}{\cos x}
Now, we will use the trigonometric identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1,
tan(x)sin(x)+cos(x)=1cosx\Rightarrow \tan \left( x \right)\sin \left( x \right)+\cos \left( x \right)=\dfrac{1}{\cos x}
Now, we know that secx=1cosx\sec x=\dfrac{1}{\cos x}, so we will put secx=1cosx\sec x=\dfrac{1}{\cos x}.
tan(x)sin(x)+cos(x)=secx\Rightarrow \tan \left( x \right)\sin \left( x \right)+\cos \left( x \right)=\sec x
Since, LHS = sec x which is equal to RHS.
So, LHS = RHS
Hence, proved.
This is our required solution.

Note: Students are required to note that when we are given secθ\sec \theta , cosecθ\operatorname{cosec}\theta , tanθ\tan \theta , and cotθ\cot \theta in the trigonometric expression then we always change them into sinθ\sin \theta and cosθ\cos \theta . Also, students are required to memorize all the trigonometric formulas otherwise they will not be able to prove the above question.