Solveeit Logo

Question

Question: How do you prove \[{\sin ^2}x - {\sin ^2}y = \sin (x + y)\sin (x - y)\] ?...

How do you prove sin2xsin2y=sin(x+y)sin(xy){\sin ^2}x - {\sin ^2}y = \sin (x + y)\sin (x - y) ?

Explanation

Solution

Here, we are given sin2xsin2y=sin(x+y)sin(xy){\sin ^2}x - {\sin ^2}y = \sin (x + y)\sin (x - y) and we will solve the RHS part and compare it with the LHS part. To solve this, we will use the trigonometric ratios formulas: sin(x+y)=sinxcosy+cosxsiny\sin (x + y) = \sin x\cos y + \cos x\sin y, sin(xy)=sinxcosycosxsiny\sin (x - y) = \sin x\cos y - \cos x\sin y and sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 . Also we will use the formula (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2} too. After applying all these to solve the RHS part, we will get the LHS part and so will prove both are equal.

Complete step by step answer:
Given that,
sin2xsin2y=sin(x+y)sin(xy){\sin ^2}x - {\sin ^2}y = \sin (x + y)\sin (x - y)
We will solve the RHS part and compare it with LHS as below:
RHS=sin(x+y)sin(xy)RHS= \sin (x + y)\sin (x - y)
We know that,
sin(x+y)=sinxcosy+cosxsiny\sin (x + y) = \sin x\cos y + \cos x\sin y and sin(xy)=sinxcosycosxsiny\sin (x - y) = \sin x\cos y - \cos x\sin y
Apply this and we will get,
RHS=(sinxcosy+cosxsiny)(sinxcosycosxsiny)RHS = \left( {\sin x\cos y + \cos x\sin y} \right)\left( {\sin x\cos y - \cos x\sin y} \right)

Let a=sinxcosya = \sin x\cos y and b=cosxsinyb = \cos x\sin y
Substituting the value, we will get,
RHS=(a+b)(ab)RHS = (a + b)(a - b)
We know the formula (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2} and so applying this, we will get,
RHS=a2b2RHS = {a^2} - {b^2}
Again substitute the values of a and b, we will get,
RHS=(sinxcosy)2(cosxsiny)2RHS = {\left( {\sin x\cos y} \right)^2} - {\left( {\cos x\sin y} \right)^2}
RHS=sin2xcos2ycos2xsin2yRHS = {\sin ^2}x{\cos ^2}y - {\cos ^2}x{\sin ^2}y
We will use the identity of trigonometric ratio as:
sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
cos2x=1sin2x\Rightarrow {\cos ^2}x = 1 - {\sin ^2}x

So, applying this, we will get,
RHS=sin2x(1sin2y)(1sin2x)sin2yRHS= {\sin ^2}x\left( {1 - {{\sin }^2}y} \right) - \left( {1 - {{\sin }^2}x} \right){\sin ^2}y
Expanding this, we will get,
RHS=(sin2xsin2xsin2y)(sin2ysin2xsin2y)RHS = \left( {{{\sin }^2}x - {{\sin }^2}x{{\sin }^2}y} \right) - \left( {{{\sin }^2}y - {{\sin }^2}x{{\sin }^2}y} \right)
Removing the brackets, we will get,
RHS=sin2xsin2xsin2ysin2y+sin2xsin2yRHS = {\sin ^2}x - {\sin ^2}x{\sin ^2}y - {\sin ^2}y + {\sin ^2}x{\sin ^2}y
Rearranging this, we will get,
RHS=sin2xsin2ysin2xsin2y+sin2xsin2yRHS = {\sin ^2}x - {\sin ^2}y - {\sin ^2}x{\sin ^2}y + {\sin ^2}x{\sin ^2}y
Cancelling the terms, we will get,
RHS=sin2xsin2y=LHSRHS = {\sin ^2}x - {\sin ^2}y =LHS
Thus, RHS = LHS.

Hence, sin2xsin2y=sin(x+y)sin(xy){\sin ^2}x - {\sin ^2}y = \sin (x + y)\sin (x - y) is proved.

Note: Trigonometry is the relationship between the sides and angles of a right-angled triangle. Trigonometry is one of those divisions in mathematics that helps in finding the angles and missing sides of a triangle with the help of trigonometric ratios. The angles are either measured in radians or degrees. The trigonometric ratios of a triangle are also called the trigonometric functions. Sine, cosine, and tangent are 3 important trigonometric functions and are abbreviated as sin, cos and tan.