Solveeit Logo

Question

Question: How do you prove \(\sec x-\cos x=\sin x\tan x\) ?...

How do you prove secxcosx=sinxtanx\sec x-\cos x=\sin x\tan x ?

Explanation

Solution

We are given that right side is sin x tan x and left side is sec x – cos x, we will first learn how we can simplify sec x, tan x, into the simplest form then we use secx=1cosx,tanx=sinxcosx\sec x=\dfrac{1}{\cos x},\tan x=\dfrac{\sin x}{\cos x} . We will also need the identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 . We will simplify both the right side and the left side one by one and see that they are the same .

Complete step by step answer:
We are asked to prove that secxcosx\sec x-\cos x is the same as sinxtanx\sin x\tan x .
To prove it, we will learn how ratios are ratios connected to each other.
In our problem, we have 4 ratios so that are sinx,cosx,secx,tanx\sin x,\cos x,\sec x,\tan x .
So, we learn how they are connected. We know that sinx=1cosecx\sin x=\dfrac{1}{\cos ecx} , cosx=1secx\cos x=\dfrac{1}{\sec x} or say secx=1cosx\sec x=\dfrac{1}{\cos x} , tanx\tan x is given as sinxcosx\dfrac{\sin x}{\cos x} and lastly sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 , we can change this to get sin2x=1cos2x{{\sin }^{2}}x=1-{{\cos }^{2}}x or cos2x=1sin2x{{\cos }^{2}}x=1-{{\sin }^{2}}x as needed.
Now we will verify that secxcosx=sinxtanx\sec x-\cos x=\sin x\tan x .
So, we consider the left hand side.
We have secxcosx\sec x-\cos x .
As we know that secx=1cosx\sec x=\dfrac{1}{\cos x}
So, secxcosx=1cosxcosx\sec x-\cos x=\dfrac{1}{\cos x}-\cos x .By simplifying, we get –
=1cosxcosx1=\dfrac{1}{\cos x}-\dfrac{\cos x}{1} .
By LCM we simplify further and we get –
=1cos2xcosx=\dfrac{1-{{\cos }^{2}}x}{\cos x} .
We know that cos2x+sin2x=1{{\cos }^{2}}x+{{\sin }^{2}}x=1
So, 1cos2x=sin2x1-{{\cos }^{2}}x={{\sin }^{2}}x .
So using the above identity, we get –
secxcosx=sin2xcosx\sec x-\cos x=\dfrac{{{\sin }^{2}}x}{\cos x} …………………………… (1)
So we get left side simplified as sin2xcosx\dfrac{{{\sin }^{2}}x}{\cos x}
Now we consider the right side, we have sinx×tanx\sin x\times \tan x .
As tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} , so
sinxtanx=sinx×sinxcosx\sin x\tan x=\sin x\times \dfrac{\sin x}{\cos x}
Simplifying, we get –
=sin2xcosx=\dfrac{{{\sin }^{2}}x}{\cos x}
So, sinxtanx=sin2xcosx\sin x\tan x=\dfrac{{{\sin }^{2}}x}{\cos x} …………………………… (2)
From eq (1) and (2) we get –
sinxtanx\sin x\tan x and secxcosx\sec x-\cos x are equal to one another.

Hence secxcosx=sinxtanx\sec x-\cos x=\sin x\tan x

Note: We can also extend the proof of the left hand side to reach to the right hand side but many time it get complicated so we normally just simplify to the simplest term possible then start working on the other side we left our left side at secxcosx=sin2xcosx\sec x-\cos x=\dfrac{{{\sin }^{2}}x}{\cos x} as sin2x=sinxsinx{{\sin }^{2}}x=\sin x\sin x .
So, using this, we get –
=sinxsinxcosx=\dfrac{\sin x\sin x}{\cos x}
=sinx×(sinxcosx)=\sin x\times \left( \dfrac{\sin x}{\cos x} \right)
As sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x
So, =sinx×tanx=\sin x\times \tan x
= Right Hand Side.
Hence proved.