Question
Question: How do you prove \(\left( {\sin x + \cos x} \right)\left( {\tan x + \cot x} \right) = \sec x + \csc ...
How do you prove (sinx+cosx)(tanx+cotx)=secx+cscx?
Solution
In order to proof the above statement ,take the left hand side of the equation and puttanx=cosxsinx,cotx=sinxcosx.now taking LCM and combining terms ,you will get sin2x+cos2x in the numerator put it equal to 1 according to the identity ,then separating the denominator further will give your final result which is equal to right-hand side of the equation.
Complete step by step solution:
To prove: (sinx+cosx)(tanx+cotx)=secx+cscx
Proof:
Taking Left-hand Side of the equation,
⇒(sinx+cosx)(tanx+cotx)
As we know that tanxis equal to the ratio of sinxto cosxand similarly cotxis equal to the ratio of cosxto sinx.In simple words,tanx=cosxsinx,cotx=sinxcosx
Putting these values in the above equation, we get
x}}} \right)$$ Simplifying further by taking LCM as $$\cos x\sin x$$ , we get $$ \Rightarrow \left( {\sin x + \cos x} \right)\left( {\dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{\cos x\sin x}}} \right)$$ From the identity of trigonometry which states that sum of squares of sine and cosine is equal to 1 i.e. $${\sin ^2}x + {\cos ^2}x = 1$$ . Replacing in the equation, we get\Rightarrow \left( {\sin x + \cos x} \right)\left( {\dfrac{1}{{\cos x\sin x}}} \right) \\
\Rightarrow \dfrac{{\left( {\sin x + \cos x} \right)}}{{\cos x\sin x}} \\
\Rightarrow \dfrac{{\sin x}}{{\cos x\sin x}} + \dfrac{{\cos x}}{{\cos x\sin x}} \\
\Rightarrow \dfrac{1}{{\cos x}} + \dfrac{1}{{\sin x}} \\