Solveeit Logo

Question

Question: How do you prove \( {\left( {\sin x + \cos x} \right)^2} = 1 + 2\sin x\cos x \) ?...

How do you prove (sinx+cosx)2=1+2sinxcosx{\left( {\sin x + \cos x} \right)^2} = 1 + 2\sin x\cos x ?

Explanation

Solution

Hint : In this question we need to prove (sinx+cosx)2=1+2sinxcosx{\left( {\sin x + \cos x} \right)^2} = 1 + 2\sin x\cos x .
In order to prove we will consider the LHS and evaluate it using the formula of (a+b)2{\left( {a + b} \right)^2} . Then, we will apply the trigonometric formula and evaluate it to determine the required proof.

Complete step-by-step answer :
Here, we will prove (sinx+cosx)2=1+2sinxcosx{\left( {\sin x + \cos x} \right)^2} = 1 + 2\sin x\cos x
Now let us consider the LHS,
LHS =(sinx+cosx)2= {\left( {\sin x + \cos x} \right)^2}
So, we can see that (sinx+cosx)2{\left( {\sin x + \cos x} \right)^2} is in the form of (a+b)2{\left( {a + b} \right)^2} .
Now, we know that (a+b)2=a2+2ab+b2{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}
Here, a=sinxa = \sin x and b=cosxb = \cos x
Thus, we will substitute the value of aa and bb in the formula, we have,
(sinx+cosx)2=sin2x+2sinxcosx+cos2x{\left( {\sin x + \cos x} \right)^2} = {\sin ^2}x + 2\sin x\cos x + {\cos ^2}x
Now, let us reorder the terms,
(sinx+cosx)2=sin2x+cos2x+2sinxcosx{\left( {\sin x + \cos x} \right)^2} = {\sin ^2}x + {\cos ^2}x + 2\sin x\cos x
From trigonometric identities we know that sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 .
Let us apply the value here, we have,
(sinx+cosx)2=1+2sinxcosx{\left( {\sin x + \cos x} \right)^2} = 1 + 2\sin x\cos x
Therefore, LHS=RHS
Hence proved.
So, the correct answer is “ (sinx+cosx)2=1+2sinxcosx{\left( {\sin x + \cos x} \right)^2} = 1 + 2\sin x\cos x ”.

Note : In this question it is important to note that whenever we come across these kinds of questions, we always start from the more complex side. This is because it is a lot easier to eliminate terms to make a complex function simple than to find ways to introduce terms to make a simple function complex. Take one step, watch one step.