Solveeit Logo

Question

Question: How do you prove from the definition of differentiability that the function \(f\left( x \right) = \d...

How do you prove from the definition of differentiability that the function f(x)=2x+1x2f\left( x \right) = \dfrac{{2x + 1}}{{x - 2}} is differentiable?

Explanation

Solution

This question is based on the definition of differentiability. The definition is: let f:RRf:\mathbb{R} \to \mathbb{R}, be a function f is differentiable at x, if the following limit exists: limtxf(t)f(x)tx\mathop {\lim }\limits_{t \to x} \dfrac{{f\left( t \right) - f\left( x \right)}}{{t - x}}, where, tRt \in \mathbb{R} and txt \ne x. This equation is called the derivative of f at x, and it is denoted by f(x)f'\left( x \right).

Complete step-by-step solution:
In this question, the function is given as below.
f(x)=2x+1x2\Rightarrow f\left( x \right) = \dfrac{{2x + 1}}{{x - 2}}
Here, x \in \mathbb{R} - \left\\{ 2 \right\\}
Now, the definition of differentiability is as stated below.
Let f:RRf:\mathbb{R} \to \mathbb{R}, be a function f is differentiable at x, if the following limit exists: limtxf(t)f(x)tx\mathop {\lim }\limits_{t \to x} \dfrac{{f\left( t \right) - f\left( x \right)}}{{t - x}}, where, tRt \in \mathbb{R} and txt \ne x. This equation is called the derivative of f at x, and it is denoted by f(x)f'\left( x \right).
Therefore,
f(x)=limtxf(t)f(x)tx\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{t \to x} \dfrac{{f\left( t \right) - f\left( x \right)}}{{t - x}} ...(1)
Let us know the value of f(t)f\left( t \right).
f(t)=2t+1t2\Rightarrow f\left( t \right) = \dfrac{{2t + 1}}{{t - 2}}
Where, t \in \mathbb{R} - \left\\{ 2 \right\\},t \ne x
Now, let us find the value of,
f(t)f(x)\Rightarrow f\left( t \right) - f\left( x \right)
Substitute the values of f(t)f\left( t \right) and f(x)f\left( x \right).
f(t)f(x)=2t+1t22x+1x2\Rightarrow f\left( t \right) - f\left( x \right) = \dfrac{{2t + 1}}{{t - 2}} - \dfrac{{2x + 1}}{{x - 2}}
Let us take LCM on the right-hand side.
f(t)f(x)=(2t+1)(x2)(2x+1)(t2)(t2)(x2)\Rightarrow f\left( t \right) - f\left( x \right) = \dfrac{{\left( {2t + 1} \right)\left( {x - 2} \right) - \left( {2x + 1} \right)\left( {t - 2} \right)}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}
Let us multiply the numerator to remove the brackets.
f(t)f(x)=(2tx4t+x2)(2tx4x+t2)(t2)(x2)\Rightarrow f\left( t \right) - f\left( x \right) = \dfrac{{\left( {2tx - 4t + x - 2} \right) - \left( {2tx - 4x + t - 2} \right)}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}
Let us open the brackets of the numerator.
f(t)f(x)=2tx4t+x22tx+4xt+2(t2)(x2)\Rightarrow f\left( t \right) - f\left( x \right) = \dfrac{{2tx - 4t + x - 2 - 2tx + 4x - t + 2}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}
Let us simplify the above step.
f(t)f(x)=5t+5x(t2)(x2)\Rightarrow f\left( t \right) - f\left( x \right) = \dfrac{{ - 5t + 5x}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}
Let us take out -5 as a common factor from the numerator.
f(t)f(x)=5(tx)(t2)(x2)\Rightarrow f\left( t \right) - f\left( x \right) = \dfrac{{ - 5\left( {t - x} \right)}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}
Now, let us substitute this value in the equation (1).
f(x)=limtxf(t)f(x)tx\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{t \to x} \dfrac{{f\left( t \right) - f\left( x \right)}}{{t - x}}
Put f(t)f(x)=5(tx)(t2)(x2)f\left( t \right) - f\left( x \right) = \dfrac{{ - 5\left( {t - x} \right)}}{{\left( {t - 2} \right)\left( {x - 2} \right)}} in the above equation.
f(x)=limtx5(tx)(t2)(x2)tx\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{t \to x} \dfrac{{\dfrac{{ - 5\left( {t - x} \right)}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}}}{{t - x}}
That is equal to,
f(x)=limtx5(t2)(x2)\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{t \to x} \dfrac{{ - 5}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}
Now, let us apply the limit txt \to x.
f(x)=5(x2)(x2)\Rightarrow f'\left( x \right) = \dfrac{{ - 5}}{{\left( {x - 2} \right)\left( {x - 2} \right)}}
Let us simplify the denominator on the right-hand side.
f(x)=5(x2)2\Rightarrow f'\left( x \right) = \dfrac{{ - 5}}{{{{\left( {x - 2} \right)}^2}}}

Hence, we find that the limit in the given function exists. The given function is differentiable at x \in \mathbb{R} - \left\\{ 2 \right\\}, and f(x)=5(x2)2 \Rightarrow f'\left( x \right) = \dfrac{{ - 5}}{{{{\left( {x - 2} \right)}^2}}}, x \in \mathbb{R} - \left\\{ 2 \right\\}.

Note: The function f(x)f\left( x \right) is said to be non-differentiable if,
Both right-hand derivative (RHD) and left-hand derivative (LHD) exist but not equal.
Either or both RHD and LHD are not finite.
Either or both RHD and LHD do not exist.