Solveeit Logo

Question

Question: How do you prove\(\dfrac{{\sec x}}{{\cot x + \tan x}} = \sin x\)?...

How do you provesecxcotx+tanx=sinx\dfrac{{\sec x}}{{\cot x + \tan x}} = \sin x?

Explanation

Solution

To prove the given trigonometric function apply trigonometric identity formulas i.e., applying the double angle formula of cos, as we know that sec, csc and cot are derived from primary functions of sin, cos and tan, hence using these functions we can prove that LHS = RHS of the given function. Here we use the double angle formulas to solve the problem.

Complete step-by-step solution:
The given function is
sec(2x)=sec2x2sec2x\Rightarrow \sec \left( {2x} \right) = \dfrac{{{{\sec }^2}x}}{{2 - {{\sec }^2}x}}
Apply double angle formula of cos
cos(2A)=cosAcosAsinAsinA\Rightarrow \cos \left( {2A} \right) = \cos A \cdot \cos A - \sin A \cdot \sin A
cos(2A)=cos2Asin2A\Rightarrow \cos \left( {2A} \right) = {\cos ^2}A - {\sin ^2}A
cos(2A)=2cos2A1\Rightarrow \cos \left( {2A} \right) = 2{\cos ^2}A - 1
As we know the formula of cos2A=12sin2A{\cos ^2}A = 1 - 2{\sin ^2}A
cos(2A)=12sin2A\Rightarrow \cos \left( {2A} \right) = 1 - 2{\sin ^2}A
Applying this formula to the given function we get
sec(2x)=1cos(2x)\Rightarrow \sec \left( {2x} \right) = \dfrac{1}{{\cos \left( {2x} \right)}}
sec(2x)=12cos2x1\Rightarrow \sec \left( {2x} \right) = \dfrac{1}{{2{{\cos }^2}x - 1}}
Divide numerator and denominator by cos2x{\cos ^2}x as
sec(2x)=sec2x2sec2x\Rightarrow \sec \left( {2x} \right) = \dfrac{{{{\sec }^2}x}}{{2 - {{\sec }^2}x}}

Thus we have proved that L.H.S = R.H.S

Note: The key point to evaluate any trigonometric function is that we must know all the basic trigonometric functions and their relation and to prove the above function we must know all the basic trigonometric identities with respect to double angle formula of cos and its relation with sine function. Here are some of double angle formula for cos function:
cos(2A)=cosAcosAsinAsinA\cos \left( {2A} \right) = \cos A \cdot \cos A - \sin A \cdot \sin A
cos(2A)=cos2Asin2A\cos \left( {2A} \right) = {\cos ^2}A - {\sin ^2}A
cos(2A)=2cos2A1\cos \left( {2A} \right) = 2{\cos ^2}A - 1