Solveeit Logo

Question

Question: How do you prove \(\dfrac{\cot x}{1-\tan x}+\dfrac{\tan x}{1-\cot x}=1+\tan x+\cot x\)?...

How do you prove cotx1tanx+tanx1cotx=1+tanx+cotx\dfrac{\cot x}{1-\tan x}+\dfrac{\tan x}{1-\cot x}=1+\tan x+\cot x?

Explanation

Solution

To solve this question we will use the trigonometric property that tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} and cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x}. We will substitute the value in the LHS of the given expression and then simplify the expression to get the value equal to the RHS.

Complete step by step answer:
We have been given an expression cotx1tanx+tanx1cotx=1+tanx+cotx\dfrac{\cot x}{1-\tan x}+\dfrac{\tan x}{1-\cot x}=1+\tan x+\cot x
We have to prove that LHS=RHS.
Let us first consider the LHS of the given expression we have cotx1tanx+tanx1cotx\dfrac{\cot x}{1-\tan x}+\dfrac{\tan x}{1-\cot x}
Now, let us express the value of tanx\tan x and cotx\cot x in terms of sinx\sin x and cosx\cos x.
Now, we know that tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} and cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x}
Substituting the values in the given expression we get
cosxsinx1sinxcosx+sinxcosx1cosxsinx\Rightarrow \dfrac{\dfrac{\cos x}{\sin x}}{1-\dfrac{\sin x}{\cos x}}+\dfrac{\dfrac{\sin x}{\cos x}}{1-\dfrac{\cos x}{\sin x}}
Now, simplifying the obtained equation we get
cosxsinxcosxsinxcosx+sinxcosxsinxcosxsinx\Rightarrow \dfrac{\dfrac{\cos x}{\sin x}}{\dfrac{\cos x-\sin x}{\cos x}}+\dfrac{\dfrac{\sin x}{\cos x}}{\dfrac{\sin x-\cos x}{\sin x}}
Now, rearranging the terms we get
cos2xsinx(cosxsinx)+sin2xcosx(sinxcosx)\Rightarrow \dfrac{{{\cos }^{2}}x}{\sin x\left( \cos x-\sin x \right)}+\dfrac{{{\sin }^{2}}x}{\cos x\left( \sin x-\cos x \right)}
Now, we can rewrite the above equation as
cos2xsinx(sinxcosx)+sin2xcosx(sinxcosx)\Rightarrow \dfrac{{{\cos }^{2}}x}{-\sin x\left( \sin x-\cos x \right)}+\dfrac{{{\sin }^{2}}x}{\cos x\left( \sin x-\cos x \right)}
Now, taking the common term out we get
1(sinxcosx)[cos2xsinx+sin2xcosx]\Rightarrow \dfrac{1}{\left( \sin x-\cos x \right)}\left[ \dfrac{{{\cos }^{2}}x}{-\sin x}+\dfrac{{{\sin }^{2}}x}{\cos x} \right]
Now, simplifying the obtained equation further we get

& \Rightarrow \dfrac{1}{\left( \sin x-\cos x \right)}\left[ \dfrac{-{{\cos }^{3}}x+{{\sin }^{3}}x}{\sin x\cos x} \right] \\\ & \Rightarrow \dfrac{1}{\left( \sin x-\cos x \right)}\left[ \dfrac{{{\sin }^{3}}x-{{\cos }^{3}}x}{\sin x\cos x} \right] \\\ \end{aligned}$$ Now, we know that $${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$$ Now, by applying the formula in the above obtained equation we get $$\Rightarrow \dfrac{1}{\left( \sin x-\cos x \right)}\left[ \dfrac{\left( \sin x-\cos x \right)\left( {{\sin }^{2}}x+{{\cos }^{2}}x+\sin x\cos x \right)}{\sin x\cos x} \right]$$ Now, cancel out the common terms we get $$\Rightarrow \left[ \dfrac{\left( {{\sin }^{2}}x+{{\cos }^{2}}x+\sin x\cos x \right)}{\sin x\cos x} \right]$$ Now, we can rewrite the above obtained equation as $$\Rightarrow \dfrac{{{\sin }^{2}}x}{\sin x\cos x}+\dfrac{{{\cos }^{2}}x}{\sin x\cos x}+\dfrac{\sin x\cos x}{\sin x\cos x}$$ Now, cancelling the common terms we get $$\Rightarrow \dfrac{\sin x}{\cos x}+\dfrac{\cos x}{\sin x}+1$$ Now we know that $\tan x=\dfrac{\sin x}{\cos x}$ and $\cot x=\dfrac{\cos x}{\sin x}$ Substituting the values in the above obtained equation we get $$\Rightarrow \tan x+\cos x+1$$ which is equal to the RHS. Hence we get $\dfrac{\cot x}{1-\tan x}+\dfrac{\tan x}{1-\cot x}=1+\tan x+\cot x$ Hence proved **Note:** Alternatively one can consider the RHS of the given expression and simplify it to obtain a value equal to the LHS. But sometimes it is difficult to start with the RHS and arrive at the LHS value. Another way is to solve both LHS and RHS at some point and get the equal values.