Solveeit Logo

Question

Question: How do you prove \( \dfrac{{\cos x}}{{1 - \sin x}} = \sec x + \tan x \) ?...

How do you prove cosx1sinx=secx+tanx\dfrac{{\cos x}}{{1 - \sin x}} = \sec x + \tan x ?

Explanation

Solution

Hint : In order to prove the given we will consider LHS and divide each terms by cosx\cos x , and we will apply basic trigonometric identities like 1cosx=secx\dfrac{1}{{\cos x}} = \sec x , sinxcosx=tanx\dfrac{{\sin x}}{{\cos x}} = \tan x , sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1 and algebraic identity a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) . Then, evaluate and prove the given

** Complete step-by-step answer** :
We need to prove cosx1sinx=secx+tanx\dfrac{{\cos x}}{{1 - \sin x}} = \sec x + \tan x
Now, let us consider the LHS,
LHS= cosx1sinx\dfrac{{\cos x}}{{1 - \sin x}}
Let us divide the terms by cosx\cos x ,
=cosxcosx1cosxsinxcosx= \dfrac{{\dfrac{{\cos x}}{{\cos x}}}}{{\dfrac{1}{{\cos x}} - \dfrac{{\sin x}}{{\cos x}}}}
We know that 1cosx=secx\dfrac{1}{{\cos x}} = \sec x and sinxcosx=tanx\dfrac{{\sin x}}{{\cos x}} = \tan x , then we have,
=1secxtanx= \dfrac{1}{{\sec x - \tan x}}
Now, we also know that sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1
Therefore, we have,
=sec2xtan2xsecxtanx= \dfrac{{{{\sec }^2}x - {{\tan }^2}x}}{{\sec x - \tan x}}
We know that a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)
Thus, LHS =(secx+tanx)(secxtanx)secxtanx= \dfrac{{\left( {\sec x + \tan x} \right)\left( {\sec x - \tan x} \right)}}{{\sec x - \tan x}}
Now, by cancelling the common terms, we have,
LHS =secx+tanx= \sec x + \tan x =RHS
Hence proved that cosx1sinx=secx+tanx\dfrac{{\cos x}}{{1 - \sin x}} = \sec x + \tan x .

Alternate method:
Now, let us consider the LHS,
LHS= cosx1sinx\dfrac{{\cos x}}{{1 - \sin x}}
Let us multiply the numerator and the denominator by 1+sinx1 + \sin x ,
=cosx1sinx×1+sinx1+sinx= \dfrac{{\cos x}}{{1 - \sin x}} \times \dfrac{{1 + \sin x}}{{1 + \sin x}}
=cosx(1+sinx)(1sinx)(1+sinx)= \dfrac{{\cos x\left( {1 + \sin x} \right)}}{{\left( {1 - \sin x} \right)\left( {1 + \sin x} \right)}}
By a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) , we have,
=cosx(1+sinx)12sin2x= \dfrac{{\cos x\left( {1 + \sin x} \right)}}{{{1^2} - {{\sin }^2}x}}
Now, by sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 , we have,
=cosx(1+sinx)cos2x= \dfrac{{\cos x\left( {1 + \sin x} \right)}}{{{{\cos }^2}x}}
Now, cancelling cosx\cos x , we have,
=(1+sinx)cosx= \dfrac{{\left( {1 + \sin x} \right)}}{{\cos x}}
=1cosx+sinxcosx= \dfrac{1}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}}
We know that 1cosx=secx\dfrac{1}{{\cos x}} = \sec x and sinxcosx=tanx\dfrac{{\sin x}}{{\cos x}} = \tan x , then we have,
LHS =secx+tanx= \sec x + \tan x =RHS
Hence proved that cosx1sinx=secx+tanx\dfrac{{\cos x}}{{1 - \sin x}} = \sec x + \tan x .
So, the correct answer is “ cosx1sinx=secx+tanx\dfrac{{\cos x}}{{1 - \sin x}} = \sec x + \tan x ”.

Note : In this question it is important to note that whenever we come across these kinds of questions, we always start from the more complex side. This is because it is a lot easier to eliminate terms to make a complex function simple than to find ways to introduce terms to make a simple function complex. Take one step, watch one step. Manipulation of identities and formulas as per need is the most important aspect here.