Solveeit Logo

Question

Question: How do you prove: \[\dfrac{{\cos \theta }}{{1 - \tan \theta }} + \dfrac{{\sin \theta }}{{1 - \cot \t...

How do you prove: cosθ1tanθ+sinθ1cotθ=2sin(45+θ)\dfrac{{\cos \theta }}{{1 - \tan \theta }} + \dfrac{{\sin \theta }}{{1 - \cot \theta }} = \sqrt 2 \sin \left( {{{45}^ \circ } + \theta } \right) ?

Explanation

Solution

Hint : The given question deals with basic simplification of trigonometric functions by using some of the simple trigonometric formulae such as tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} and secx=1cosx\sec x = \dfrac{1}{{\cos x}} . Basic algebraic rules and trigonometric identities are to be kept in mind while doing simplification in the given problem and proving the result given to us.

Complete step by step solution:
In the given problem, we have to prove a trigonometric identity that can be further used in many questions and problems as a direct result and has wide ranging applications. For proving the desired result, we need to first know the definitions of all the six trigonometric ratios.
Now, we need to make the left and right sides of the equation equal.
L.H.S. =cosθ1tanθ+sinθ1cotθ = \dfrac{{\cos \theta }}{{1 - \tan \theta }} + \dfrac{{\sin \theta }}{{1 - \cot \theta }}
As we know that tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} and secx=1cosx\sec x = \dfrac{1}{{\cos x}} . So, we get,
=cosθ1(sinθcosθ)+sinθ1(cosθsinθ)= \dfrac{{\cos \theta }}{{1 - \left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)}} + \dfrac{{\sin \theta }}{{1 - \left( {\dfrac{{\cos \theta }}{{\sin \theta }}} \right)}}
Taking LCM of fractions, we get,
=cosθ(cosθsinθcosθ)+sinθ(sinθcosθsinθ)= \dfrac{{\cos \theta }}{{\left( {\dfrac{{\cos \theta - \sin \theta }}{{\cos \theta }}} \right)}} + \dfrac{{\sin \theta }}{{\left( {\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta }}} \right)}}
=cos2θ(cosθsinθ)+sin2θ(sinθcosθ)= \dfrac{{{{\cos }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}} + \dfrac{{{{\sin }^2}\theta }}{{\left( {\sin \theta - \cos \theta } \right)}}
Taking negative sign common from the last term, we get,
=cos2θ(cosθsinθ)sin2θ(cosθsinθ)= \dfrac{{{{\cos }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}} - \dfrac{{{{\sin }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}}
=cos2θsin2θ(cosθsinθ)= \dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}}
Factorizing the numerator using algebraic identity (a2b2)=(ab)(a+b)\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) ,
=(cosθ+sinθ)(cosθsinθ)(cosθsinθ)= \dfrac{{\left( {\cos \theta + \sin \theta } \right)\left( {\cos \theta - \sin \theta } \right)}}{{\left( {\cos \theta - \sin \theta } \right)}}
=(cosθ+sinθ)= \left( {\cos \theta + \sin \theta } \right)
Multiplying the numerator and denominator by 2\sqrt 2 ,
=2(12cosθ+12sinθ)= \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\cos \theta + \dfrac{1}{{\sqrt 2 }}\sin \theta } \right)
We know that sin45=12\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }} and cos45=12\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }} .
=2(sin(45)cosθ+cos(45)sinθ)= \sqrt 2 \left( {\sin \left( {{{45}^ \circ }} \right)\cos \theta + \cos \left( {{{45}^ \circ }} \right)\sin \theta } \right)
Using sine compound angle formula, we get,
=2sin(45+θ)=R.H.S.= \sqrt 2 \sin \left( {{{45}^ \circ } + \theta } \right) = R.H.S.
As the left side of the equation is equal to the right side of the equation, we have,
cosθ1tanθ+sinθ1cotθ=2sin(45+θ)\dfrac{{\cos \theta }}{{1 - \tan \theta }} + \dfrac{{\sin \theta }}{{1 - \cot \theta }} = \sqrt 2 \sin \left( {{{45}^ \circ } + \theta } \right)

Note : Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such types of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations.