Question
Question: How do you prove \(\dfrac{{1 - \tan x}}{{1 + \tan x}} = \dfrac{{1 - \sin 2x}}{{\cos 2x}}\) ?...
How do you prove 1+tanx1−tanx=cos2x1−sin2x ?
Solution
We will use the double angle trigonometric formulas to simplify any one side of the equation or both sides so that the result for both should come same and therefore, we can prove that L.H.S. of the equation is equal to the R.H.S. Here we will use pythagorean identity cos2x+sin2x=1 and some algebraic identity (a+b)(a−b)=a2−b2, (a+b)2=a2+2ab+b2 to prove the above equation.
Complete step by step answer:
Some basic trigonometric ratios are, tanx=cosxsinx, sinx=cosecx1 and cosx=secx1
We have to prove 1+tanx1−tanx=cos2x1−sin2x where
L.H.S.=1+tanx1−tanx and
R.H.S.=cos2x1−sin2x
First, we will simplify the
L.H.S.=1+tanx1−tanx,
From the ratio, tanx=cosxsinx we substitute the value of tanx in the L.H.S. of the equation,
⇒L.H.S.=1+cosxsinx1−cosxsinx
Taking the lowest common multiple in numerator and denominator, i.e., multiplying and dividing the term 1 by cosx,
⇒L.H.S.=cosxcosx+cosxsinxcosxcosx−cosxsinx
Since the denominators is same, we can add and subtract the numerator part,
⇒L.H.S.=cosxcosx+sinxcosxcosx−sinx
Cancelling cosx from denominator of both numerator and denominator, we get,
⇒L.H.S.=cosx+sinxcosx−sinx
Multiplying and dividing by cosx−sinx,
⇒L.H.S.=cosx+sinxcosx−sinx×cosx−sinxcosx−sinx
Multiplying the numerator and denominator part,
⇒L.H.S.=(cosx+sinx)(cosx−sinx)(cosx−sinx)(cosx−sinx)
In the numerator both terms are same, so we can write them as a.a=a2,
⇒L.H.S.=(cosx+sinx)(cosx−sinx)(cosx−sinx)2
The denominator part is of the form (a+b)(a−b) so we can substitute (a+b)(a−b)=a2−b2,
⇒L.H.S.=(cos2x−sin2x)(cosx−sinx)2
Expanding the numerator in the form (a−b)2=a2−2ab+b2,
⇒L.H.S.=(cos2x−sin2x)cos2x−2sinxcosx+sin2x
The term cos2x−sin2x is a double angle formula of cos2x, so substituting cos2x−sin2x=cos2x, we get,
⇒L.H.S.=cos2xcos2x−2sinxcosx+sin2x
We can write this equation as,
⇒L.H.S.=cos2xcos2x+sin2x−2sinxcosx
We know, cos2x+sin2x=1 which is a trigonometric identity, so substituting this value,
⇒L.H.S.=cos2x1−2sinxcosx
We know that sin2x=2sinxcosx which is double angle formula, therefore, substituting this value,
⇒L.H.S.=cos2x1−sin2x=R.H.S.
Therefore, we have proved L.H.S. = R.H.S.
Note:
We have three pythagorean identities, one we have used in the above problem and the other two are 1+cot2θ=csc2θ and tan2θ+1=sec2θ. We use them in almost all the trigonometric problems.