Solveeit Logo

Question

Question: How do you prove \(\dfrac{{1 - \tan x}}{{1 + \tan x}} = \dfrac{{1 - \sin 2x}}{{\cos 2x}}\) ?...

How do you prove 1tanx1+tanx=1sin2xcos2x\dfrac{{1 - \tan x}}{{1 + \tan x}} = \dfrac{{1 - \sin 2x}}{{\cos 2x}} ?

Explanation

Solution

We will use the double angle trigonometric formulas to simplify any one side of the equation or both sides so that the result for both should come same and therefore, we can prove that L.H.S. of the equation is equal to the R.H.S. Here we will use pythagorean identity cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1 and some algebraic identity (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2}, (a+b)2=a2+2ab+b2{(a + b)^2} = {a^2} + 2ab + {b^2} to prove the above equation.

Complete step by step answer:
Some basic trigonometric ratios are, tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}, sinx=1cosecx\sin x = \dfrac{1}{{\cos ecx}} and cosx=1secx\cos x = \dfrac{1}{{\sec x}}

We have to prove 1tanx1+tanx=1sin2xcos2x\dfrac{{1 - \tan x}}{{1 + \tan x}} = \dfrac{{1 - \sin 2x}}{{\cos 2x}} where
L.H.S.=1tanx1+tanxL.H.S. =\dfrac{{1 - \tan x}}{{1 + \tan x}} and
R.H.S.=1sin2xcos2xR.H.S. = \dfrac{{1 - \sin 2x}}{{\cos 2x}}

First, we will simplify the
L.H.S.=1tanx1+tanxL.H.S. =\dfrac{{1 - \tan x}}{{1 + \tan x}},
From the ratio, tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} we substitute the value of tanx\tan x in the L.H.S. of the equation,
L.H.S.=1sinxcosx1+sinxcosx\Rightarrow L.H.S. =\dfrac{{1 - \dfrac{{\sin x}}{{\cos x}}}}{{1 + \dfrac{{\sin x}}{{\cos x}}}}

Taking the lowest common multiple in numerator and denominator, i.e., multiplying and dividing the term 11 by cosx\cos x,
L.H.S.=cosxcosxsinxcosxcosxcosx+sinxcosx\Rightarrow L.H.S. =\dfrac{{\dfrac{{\cos x}}{{\cos x}} - \dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{{\cos x}}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}}}}

Since the denominators is same, we can add and subtract the numerator part,
L.H.S.=cosxsinxcosxcosx+sinxcosx\Rightarrow L.H.S. = \dfrac{{\dfrac{{\cos x - \sin x}}{{\cos x}}}}{{\dfrac{{\cos x + \sin x}}{{\cos x}}}}

Cancelling cosx\cos x from denominator of both numerator and denominator, we get,
L.H.S.=cosxsinxcosx+sinx\Rightarrow L.H.S. =\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}}

Multiplying and dividing by cosxsinx\cos x - \sin x,
L.H.S.=cosxsinxcosx+sinx×cosxsinxcosxsinx\Rightarrow L.H.S. =\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}} \times \dfrac{{\cos x - \sin x}}{{\cos x - \sin x}}

Multiplying the numerator and denominator part,
L.H.S.=(cosxsinx)(cosxsinx)(cosx+sinx)(cosxsinx)\Rightarrow L.H.S. = \dfrac{{(\cos x - \sin x)(\cos x - \sin x)}}{{(\cos x + \sin x)(\cos x - \sin x)}}

In the numerator both terms are same, so we can write them as a.a=a2a.a = {a^2},
L.H.S.=(cosxsinx)2(cosx+sinx)(cosxsinx)\Rightarrow L.H.S. = \dfrac{{{{(\cos x - \sin x)}^2}}}{{(\cos x + \sin x)(\cos x - \sin x)}}

The denominator part is of the form (a+b)(ab)(a + b)(a - b) so we can substitute (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2},
L.H.S.=(cosxsinx)2(cos2xsin2x)\Rightarrow L.H.S. = \dfrac{{{{(\cos x - \sin x)}^2}}}{{({{\cos }^2}x - {{\sin }^2}x)}}

Expanding the numerator in the form (ab)2=a22ab+b2{(a - b)^2} = {a^2} - 2ab + {b^2},
L.H.S.=cos2x2sinxcosx+sin2x(cos2xsin2x)\Rightarrow L.H.S. = \dfrac{{{{\cos }^2}x - 2\sin x\cos x + {{\sin }^2}x}}{{({{\cos }^2}x - {{\sin }^2}x)}}

The term cos2xsin2x{\cos ^2}x - {\sin ^2}x is a double angle formula of cos2x\cos 2x, so substituting cos2xsin2x=cos2x{\cos ^2}x - {\sin ^2}x = \cos 2x, we get,
L.H.S.=cos2x2sinxcosx+sin2xcos2x\Rightarrow L.H.S. = \dfrac{{{{\cos }^2}x - 2\sin x\cos x + {{\sin }^2}x}}{{\cos 2x}}

We can write this equation as,
L.H.S.=cos2x+sin2x2sinxcosxcos2x\Rightarrow L.H.S. = \dfrac{{{{\cos }^2}x + {{\sin }^2}x - 2\sin x\cos x}}{{\cos 2x}}

We know, cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1 which is a trigonometric identity, so substituting this value,
L.H.S.=12sinxcosxcos2x\Rightarrow L.H.S. = \dfrac{{1 - 2\sin x\cos x}}{{\cos 2x}}

We know that sin2x=2sinxcosx\sin 2x = 2\sin x\cos x which is double angle formula, therefore, substituting this value,
L.H.S.=1sin2xcos2x=R.H.S.\Rightarrow L.H.S. = \dfrac{{1 - \sin 2x}}{{\cos 2x}}= R.H.S.

Therefore, we have proved L.H.S. = R.H.S.

Note:
We have three pythagorean identities, one we have used in the above problem and the other two are 1+cot2θ=csc2θ1+cot^2\theta=csc^2\theta and tan2θ+1=sec2θtan^2\theta+1=sec^2\theta. We use them in almost all the trigonometric problems.