Solveeit Logo

Question

Question: How do you prove \( \dfrac{{1 + \sin x}}{{1 - \sin x}} = {(\sec x + \tan x)^2} \) ?...

How do you prove 1+sinx1sinx=(secx+tanx)2\dfrac{{1 + \sin x}}{{1 - \sin x}} = {(\sec x + \tan x)^2} ?

Explanation

Solution

Hint : In order to proof the above statement ,take LHS first and Multiply divide with 1+sinx1 + \sin x and then use A2+B2+2AB=(A+B)2{A^2} + {B^2} + 2AB = {\left( {A + B} \right)^2} in the numerator to expand and (A+b)(AB)=A2B2(A + b)(A - B) = {A^2} - {B^2} in the denominator to proof that LHS =RHS

Complete step-by-step answer :
To prove: 1+sinx1sinx=(secx+tanx)2\dfrac{{1 + \sin x}}{{1 - \sin x}} = {(\sec x + \tan x)^2}
Proof:
Taking Left-hand Side,
1+sinx1sinx\Rightarrow \dfrac{{1 + \sin x}}{{1 - \sin x}}
Multiply and divide with 1+sinx1 + \sin x in above expression
(1+sinx1sinx)(1+sinx1+sinx) (1+sinx)2(1sinx)(1+sinx)  \Rightarrow \left( {\dfrac{{1 + \sin x}}{{1 - \sin x}}} \right)\left( {\dfrac{{1 + \sin x}}{{1 + \sin x}}} \right) \\\ \Rightarrow \dfrac{{{{\left( {1 + \sin x} \right)}^2}}}{{\left( {1 - \sin x} \right)\left( {1 + \sin x} \right)}} \\\
In denominator using formula (A+b)(AB)=A2B2(A + b)(A - B) = {A^2} - {B^2}
And expanding numerator with the formula A2+B2+2AB=(A+B)2{A^2} + {B^2} + 2AB = {\left( {A + B} \right)^2}
1+sin2x+2sinx1sin2x\Rightarrow \dfrac{{1 + {{\sin }^2}x + 2\sin x}}{{1 - {{\sin }^2}x}}
Using trigonometric identity cos2x=1sin2x{\cos ^2}x = 1 - {\sin ^2}x

1+sin2x+2sinxcos2x 1cos2x+sin2xcos2x+2sinxcos2x 1cos2x+sin2xcos2x+2sinxcosx1cosx   \Rightarrow \dfrac{{1 + {{\sin }^2}x + 2\sin x}}{{{{\cos }^2}x}} \\\ \Rightarrow \dfrac{1}{{{{\cos }^2}x}} + \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + \dfrac{{2\sin x}}{{{{\cos }^2}x}} \\\ \Rightarrow \dfrac{1}{{{{\cos }^2}x}} + \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + \dfrac{{2\sin x}}{{\cos x}}\dfrac{1}{{\cos x}} \;

Using rule of trigonometry 1cos2x=sec2xor1cosx=secx\dfrac{1}{{{{\cos }^2}x}} = {\sec ^2}x\,or\,\dfrac{1}{{\cos x}} = \sec x , sin2xcos2x=tan2x\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = {\tan ^2}x or sinxcosx=tanx\dfrac{{\sin x}}{{\cos x}} = \tan x
sec2x+tan2x+2tanxsecx\Rightarrow {\sec ^{2x}} + {\tan ^2}x + 2\tan x\sec x
Expression appear to be of the A2+B2+2AB=(A+B)2{A^2} + {B^2} + 2AB = {\left( {A + B} \right)^2}
(secx+tanx)2\Rightarrow {\left( {\sec x + \tan x} \right)^2}
Taking Right-Hand Side
(secx+tanx)2{(\sec x + \tan x)^2}
Therefore, LHS=RHS
Hence Proved.

Note : 1. Trigonometry is one of the significant branches throughout the entire existence of mathematics and this idea is given by a Greek mathematician Hipparchus.
2. Periodic Function= A function f(x)f(x) is said to be a periodic function if there exists a real number T > 0 such that f(x+T)=f(x)f(x + T) = f(x) for all x.
If T is the smallest positive real number such that f(x+T)=f(x)f(x + T) = f(x) for all x, then T is called the fundamental period of f(x)f(x) .
Since sin(2nπ+θ)=sinθ\sin \,(2n\pi + \theta ) = \sin \theta for all values of θ\theta and n \in N.
3. Even Function – A function f(x)f(x) is said to be an even function ,if f(x)=f(x)f( - x) = f(x) for all x in its domain.
Odd Function – A function f(x)f(x) is said to be an even function ,if f(x)=f(x)f( - x) = - f(x) for all x in its domain.
We know that sin(θ)=sinθ.cos(θ)=cosθandtan(θ)=tanθ\sin ( - \theta ) = - \sin \theta .\cos ( - \theta ) = \cos \theta \,and\,\tan ( - \theta ) = - \tan \theta
Therefore, sinθ\sin \theta and tanθ\tan \theta and their reciprocals, cosecθ\cos ec\theta and cotθ\cot \theta are odd functions whereas cosθ\cos \theta and its reciprocal secθ\sec \theta are even functions.