Solveeit Logo

Question

Question: How do you prove \(\cot \dfrac{x}{2} = \dfrac{{1 + \cos x}}{{\sin x}}\) ?...

How do you prove cotx2=1+cosxsinx\cot \dfrac{x}{2} = \dfrac{{1 + \cos x}}{{\sin x}} ?

Explanation

Solution

In this question we will try to simplify the expression in the right hand side of the equation to get the left hand side value. We can see that in the left hand side of the equation, we have a half angle i.e. x2\dfrac{x}{2} . So we will try to use the half angle formulas to solve this question.

Formulas used:
The formula that we are using:
2cos2(x2)=1+cosx2{\cos ^2}\left( {\dfrac{x}{2}} \right) = 1 + \cos x
sin(x)=2sin(x2)cos(x2)\sin (x) = 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right) .

Complete step by step solution:
According to question, we have
cotx2=1+cosxsinx\cot \dfrac{x}{2} = \dfrac{{1 + \cos x}}{{\sin x}} .
We should know that the original half angle formula of cosine function is
cosx2=±1+cosx2\cos \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 + \cos x}}{2}} .
We will derive the formula that will help us solve this question, so we will square both the sides of the equation:
(cosx2)2=±(1+cosx2)2{\left( {\cos \dfrac{x}{2}} \right)^2} = \pm {\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)^2}
It gives the value
cos2(x2)=1+cosx2{\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 + \cos x}}{2}
We can take 22 from the denominator from the R.H.S to the Left hand side of the equation, and therefore it gives us:
2cos2(x2)=1+cosx2{\cos ^2}\left( {\dfrac{x}{2}} \right) = 1 + \cos x
Now, Let us take the right hand side of the equation i.e.
1+cosxsinx\dfrac{{1 + \cos x}}{{\sin x}} .
Now in the numerator, we can substitute the formula :
2cos2(x2)=1+cosx2{\cos ^2}\left( {\dfrac{x}{2}} \right) = 1 + \cos x
Similarly in the denominator, we can also substitute the formula mentioned in the hint,
So we have
2cos2(x2)2sinx2cosx2\dfrac{{2{{\cos }^2}\left( {\dfrac{x}{2}} \right)}}{{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}
We can cancel out the similar terms from the numerator and denominator of the dfraction, i.e.
cosx2sinx2\dfrac{{\cos \dfrac{x}{2}}}{{\sin \dfrac{x}{2}}}
Now we know that cotangent is the ratio of cosine and sine function, represented as”
cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }} , here we have θ=x2\theta = \dfrac{x}{2}
So by applying this, it gives us
cosx2sinx2=cotx2\dfrac{{\cos \dfrac{x}{2}}}{{\sin \dfrac{x}{2}}} = \cot \dfrac{x}{2}
Hence it is proved that cotx2=1+cosxsinx\cot \dfrac{x}{2} = \dfrac{{1 + \cos x}}{{\sin x}} .

Additional Information:
We should note that the formula that we have used is derived from double angle formula i.e.
sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
Since we have to solve for (x2)\left( {\dfrac{x}{2}} \right), the half angle formula, we will replace x=(x2)x = \left( {\dfrac{x}{2}} \right) or we can say that we will put the value in half.
Therefore it gives us:
sin(x)=2sin(x2)cos(x2)\sin (x) = 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right) .

Note:
Alternate method:
We should know another formula that we can apply in this question, i.e.
cos2x=cos2xsin2x\cos 2x = {\cos ^2}x - {\sin ^2}x .
Again, we will replace x=(x2)x = \left( {\dfrac{x}{2}} \right) , and it gives us new formula i.e.
cosx=cos2x2sin2x2\cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}
By putting this value in the numerator of the R.H.S, we get:
1+cos2x2sin2x22sinx2cosx2\dfrac{{1 + {{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}
Now we know that
sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
Or, 1sin2x=cos2x1 - {\sin ^2}x = {\cos ^2}x
So by putting this we have:
cos2x2+cos2x22sinx2cosx2=2cos2x22sinx2cosx2\dfrac{{{{\cos }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2}}}{{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}} = \dfrac{{2{{\cos }^2}\dfrac{x}{2}}}{{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}
By cancelling out the common terms, it gives us value
cosx2sinx2=cotx2\dfrac{{\cos \dfrac{x}{2}}}{{\sin \dfrac{x}{2}}} = \cot \dfrac{x}{2} .