Solveeit Logo

Question

Question: How do you prove \(\cos 36\cdot \cos 72=\dfrac{1}{4}\)?...

How do you prove cos36cos72=14\cos 36\cdot \cos 72=\dfrac{1}{4}?

Explanation

Solution

For proving the given expression we have to use the identity 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right) on the LHS. Then, with the help of the trigonometric identities cos(x)=cosx\cos \left( -x \right)=\cos x and cos(180θ)=cosθ\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta we will obtain the LHS as a difference of two cosines. Finally, on using the trigonometric identity cos2A=2cos2A1\cos 2A=2{{\cos }^{2}}A-1 and the algebraic identity a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) we will be able to prove the LHS to be equal to the RHS.

Complete step by step answer:
The expression to be proved is given in the question as
cos36cos72=14\cos {{36}^{\circ }}\cdot \cos {{72}^{\circ }}=\dfrac{1}{4}
Considering the LHS of the above equation, we have
LHS=cos36cos72\Rightarrow LHS=\cos {{36}^{\circ }}\cdot \cos {{72}^{\circ }}
Multiplying and dividing the above expression by 22 we get
LHS=2cos36cos722.......(i)\Rightarrow LHS=\dfrac{2\cos {{36}^{\circ }}\cdot \cos {{72}^{\circ }}}{2}.......(i)
Now, we know the trigonometric identity
2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)
Substituting A=36A={{36}^{\circ }} and B=72B={{72}^{\circ }} in the above identity, we get
2cos36cos72=cos(36+72)+cos(3672) 2cos36cos72=cos(108)+cos(36) \begin{aligned} & \Rightarrow 2\cos {{36}^{\circ }}\cdot \cos {{72}^{\circ }}=\cos \left( {{36}^{\circ }}+{{72}^{\circ }} \right)+\cos \left( {{36}^{\circ }}-{{72}^{\circ }} \right) \\\ & \Rightarrow 2\cos {{36}^{\circ }}\cdot \cos {{72}^{\circ }}=\cos \left( {{108}^{\circ }} \right)+\cos \left( -{{36}^{\circ }} \right) \\\ \end{aligned}
Now, we know that cos(x)=cosx\cos \left( -x \right)=\cos x. So the above equation can be written as
2cos36cos72=cos(108)+cos(36)\Rightarrow 2\cos {{36}^{\circ }}\cdot \cos {{72}^{\circ }}=\cos \left( {{108}^{\circ }} \right)+\cos \left( {{36}^{\circ }} \right)
Substituting this in the equation (i) we get
LHS=12(cos(108)+cos(36))\Rightarrow LHS=\dfrac{1}{2}\left( \cos \left( {{108}^{\circ }} \right)+\cos \left( {{36}^{\circ }} \right) \right)
Now, writing the angle 108=18072{{108}^{\circ }}={{180}^{\circ }}-{{72}^{\circ }} we get
LHS=12(cos(18072)+cos(36))\Rightarrow LHS=\dfrac{1}{2}\left( \cos \left( {{180}^{\circ }}-{{72}^{\circ }} \right)+\cos \left( {{36}^{\circ }} \right) \right)
Now, we know that cos(180θ)=cosθ\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta . So the above equation can be written as

& \Rightarrow LHS=\dfrac{1}{2}\left( -\cos \left( {{72}^{\circ }} \right)+\cos \left( {{36}^{\circ }} \right) \right) \\\ & \Rightarrow LHS=\dfrac{1}{2}\left( \cos {{36}^{\circ }}-\cos {{72}^{\circ }} \right) \\\ \end{aligned}$$ Now, let $x=\cos {{36}^{\circ }}$ and $y=\cos {{72}^{\circ }}$. Putting these above, we get $$\Rightarrow LHS=\dfrac{1}{2}\left( x-y \right)...........(ii)$$ We know that $\cos 2A=2{{\cos }^{2}}A-1$. Substituting $A={{36}^{\circ }}$ in the above identity, we get $$\begin{aligned} & \Rightarrow \cos 2\left( {{36}^{\circ }} \right)=2{{\cos }^{2}}{{36}^{\circ }}-1 \\\ & \Rightarrow \cos {{72}^{\circ }}=2{{\cos }^{2}}{{36}^{\circ }}-1 \\\ & \Rightarrow y=2{{x}^{2}}-1...........(iii) \\\ \end{aligned}$$ Similarly, substituting $A={{72}^{\circ }}$ in the above identity, we get $$\begin{aligned} & \Rightarrow \cos 2\left( {{72}^{\circ }} \right)=2{{\cos }^{2}}{{72}^{\circ }}-1 \\\ & \Rightarrow \cos {{144}^{\circ }}=2{{\cos }^{2}}{{72}^{\circ }}-1 \\\ & \Rightarrow \cos {{144}^{\circ }}=2{{y}^{2}}-1 \\\ \end{aligned}$$ Now, writing the angle $${{144}^{\circ }}={{180}^{\circ }}-{{36}^{\circ }}$$ in the above equation, we get $$\Rightarrow \cos \left( {{180}^{\circ }}-{{36}^{\circ }} \right)=2{{y}^{2}}-1$$ Now, from the identity $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $ we can write the above equation as $$\begin{aligned} & \Rightarrow -\cos {{36}^{\circ }}=2{{y}^{2}}-1 \\\ & \Rightarrow -x=2{{y}^{2}}-1...........(iv) \\\ \end{aligned}$$ Subtracting (iv) from (iii) we get $\begin{aligned} & \Rightarrow y-\left( -x \right)=2{{x}^{2}}-1-\left( 2{{y}^{2}}-1 \right) \\\ & \Rightarrow y+x=2{{x}^{2}}-2{{y}^{2}}-1+1 \\\ & \Rightarrow y-\left( -x \right)=2{{x}^{2}}-1-\left( 2{{y}^{2}}-1 \right) \\\ & \Rightarrow y+x=2\left( {{x}^{2}}-{{y}^{2}} \right) \\\ \end{aligned}$ Now, from the identity ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ we write the above equation as $\begin{aligned} & \Rightarrow \left( y+x \right)=2\left( x+y \right)\left( x-y \right) \\\ & \Rightarrow \left( x+y \right)=2\left( x+y \right)\left( x-y \right) \\\ \end{aligned}$ Subtracting $\left( x+y \right)$ from both the sides, we get $$\begin{aligned} & \Rightarrow \left( x+y \right)-\left( x+y \right)=2\left( x+y \right)\left( x-y \right)-\left( x+y \right) \\\ & \Rightarrow 0=\left( x+y \right)\left( 2\left( x-y \right)-1 \right) \\\ & \Rightarrow \left( x+y \right)\left( 2\left( x-y \right)-1 \right)=0 \\\ \end{aligned}$$ On solving we get $\left( x+y \right)=0$ and $2\left( x-y \right)-1=0$ We have $x=\cos {{36}^{\circ }}$ and $y=\cos {{72}^{\circ }}$. Since both the angles are less than ${{90}^{\circ }}$, so $\left( x+y \right)\ne 0$. Thus, we have $\begin{aligned} & \Rightarrow 2\left( x-y \right)-1=0 \\\ & \Rightarrow \left( x-y \right)=\dfrac{1}{2} \\\ \end{aligned}$ Substituting this in (ii), we get $\begin{aligned} & \Rightarrow LHS=\dfrac{1}{2}\left( \dfrac{1}{2} \right) \\\ & \Rightarrow LHS=\dfrac{1}{4} \\\ & \Rightarrow LHS=RHS \\\ \end{aligned}$ **Hence, the given expression $\cos 36\cdot \cos 72=\dfrac{1}{4}$ is proved.** **Note:** For solving this question, we need to have a fair idea regarding the trigonometric identities used in the above solution. Also, we must not be confused regarding the negative sign appearing in the identity $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $. The angle ${{180}^{\circ }}-\theta $ belongs to the second quadrant, where the cosine function is negative. This justifies the negative sign present in the identity.